Multi-label Visual Classification with Label Exclusive Context

被引:0
|
作者
Chen, Xiangyu [1 ,2 ,3 ]
Yuan, Xiao-Tong [2 ]
Chen, Qiang [2 ]
Yan, Shuicheng [1 ,2 ]
Chua, Tat-Seng [1 ,3 ]
机构
[1] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, Singapore, Singapore
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
[3] Natl Univ Singapore, Sch Comp, Singapore, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce in this paper a novel approach to multi-label image classification which incorporates a new type of context - label exclusive context - with linear representation and classification. Given a set of exclusive label groups that describe the negative relationship among class labels, our method, namely LELR for Label Exclusive Linear Representation, enforces repulsive assignment of the labels from each group to a query image. The problem can be formulated as an exclusive Lasso (eLasso) model with group overlaps and affine transformation. Since existing eLasso solvers are not directly applicable to solving such an variant of eLasso in our setting, we propose a Nesterov's smoothing approximation algorithm for efficient optimization. Extensive comparing experiments on the challenging real-world visual classification benchmarks demonstrate the effectiveness of incorporating label exclusive context into visual classification.
引用
收藏
页码:834 / 841
页数:8
相关论文
共 50 条
  • [1] Context Recommendation Using Multi-Label Classification
    Zheng, Yong
    Mobasher, Bamshad
    Burke, Robin
    2014 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 2, 2014, : 288 - 295
  • [2] Learning Context-Dependent Label Permutations for Multi-Label Classification
    Nam, Jinseok
    Kim, Young-Bum
    Mencia, Eneldo Loza
    Park, Sunghyun
    Sarikaya, Ruhi
    Johannes, Furnkranz
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [3] Visual Attention in Multi-Label Image Classification
    Luo, Yan
    Jiang, Ming
    Zhao, Qi
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 820 - 827
  • [4] Multi-label classification with label clusters
    Gatto, Elaine Cecilia
    Ferrandin, Mauri
    Cerri, Ricardo
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, 67 (02) : 1741 - 1785
  • [5] Label Expansion for Multi-Label Classification
    Rivolli, Adriano
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 414 - 419
  • [6] Calibrated Multi-label Classification with Label Correlations
    Zhi-Fen He
    Ming Yang
    Hui-Dong Liu
    Lei Wang
    Neural Processing Letters, 2019, 50 : 1361 - 1380
  • [7] Robust label compression for multi-label classification
    Zhang, Ju-Jie
    Fang, Min
    Wu, Jin-Qiao
    Li, Xiao
    KNOWLEDGE-BASED SYSTEMS, 2016, 107 : 32 - 42
  • [8] Calibrated Multi-label Classification with Label Correlations
    He, Zhi-Fen
    Yang, Ming
    Liu, Hui-Dong
    Wang, Lei
    NEURAL PROCESSING LETTERS, 2019, 50 (02) : 1361 - 1380
  • [9] Multi-label classification by exploiting label correlations
    Yu, Ying
    Pedrycz, Witold
    Miao, Duoqian
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (06) : 2989 - 3004
  • [10] Multi-Label Classification with Label Graph Superimposing
    Wang, Ya
    He, Dongliang
    Li, Fu
    Long, Xiang
    Zhou, Zhichao
    Ma, Jinwen
    Wen, Shilei
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12265 - 12272