The stochastic CRB for array processing: A textbook derivation

被引:289
|
作者
Stoica, P [1 ]
Larsson, EG
Gershman, AB
机构
[1] Uppsala Univ, Dept Syst & Control, Uppsala, Sweden
[2] McMaster Univ, Dept Elect & Comp Engn, Commun Res Lab, Hamilton, ON L8S 4K1, Canada
关键词
array signal processing; Cramer-Rao bound;
D O I
10.1109/97.917699
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The stochastic Cramer-Rao bound (CRB) for direction estimation in array processing applications was indirectly derived some ten years ago as the (asymptotic) covariance matrix of the maximum likelihood (ML) estimator. Attempts to obtain the stochastic CRB directly via the CRB theory fell short of providing a simple derivation and consequently, no direct derivation of this useful performance bound was available in the open literature. In the present letter, we correct this situation by providing a textbook-like direct derivation of the stochastic CRB.
引用
收藏
页码:148 / 150
页数:3
相关论文
共 50 条
  • [1] The stochastic CRB for array processing in unknown noise fields
    Gershman, AB
    Pesavento, M
    Stoica, P
    Larsson, EG
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 2989 - 2992
  • [2] Direct Derivation of the Stochastic CRB of DOA Estimation for Rectilinear Sources
    Abeida, Habti
    Delmas, Jean Pierre
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (10) : 1522 - 1526
  • [3] A STOCHASTIC GEOMETRIC APPROACH TO SENSOR ARRAY PROCESSING
    Vo, Ba Ngu
    Vo, Ba Tuong
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 236 - 239
  • [5] Maximum likelihood array processing for stochastic coherent sources
    Stoica, P
    Ottersten, B
    Viberg, M
    Moses, RL
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (01) : 96 - 105
  • [6] Array enhanced stochastic resonance: Implications for signal processing
    Inchiosa, ME
    Bulsara, AR
    Lindner, JF
    Meadows, BK
    Ditto, WL
    CHAOTIC, FRACTAL, AND NONLINEAR SIGNAL PROCESSING, 1996, (375): : 401 - 419
  • [7] ON THE CONCENTRATED STOCHASTIC LIKELIHOOD FUNCTION IN ARRAY SIGNAL-PROCESSING
    STOICA, P
    NEHORAI, A
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1995, 14 (05) : 669 - 674
  • [8] REMARKS ON STOCHASTIC DERIVATION
    ZABCZYK, J
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1973, 21 (03): : 263 - 269
  • [9] A stochastic derivation of the geodesic rule
    Kalogeropoulos, N
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (07): : 1493 - 1502
  • [10] STOCHASTIC DERIVATION OF CONFORMAL ANOMALY
    NAMIKI, M
    SOSHI, H
    TANAKA, S
    PHYSICAL REVIEW D, 1988, 38 (04): : 1346 - 1348