On the tangent cones to plurisubharmonic currents

被引:1
|
作者
Dabbek, Khalifa [1 ]
Ghiloufi, Noureddine [1 ]
Hbil, Jawhar [1 ]
机构
[1] Univ Gabes, Fac Sci Gabes, Dept Math, Gabes 6072, Tunisia
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2016年 / 140卷 / 05期
关键词
Lelong number; Tangent cone; Plurisubharmonic current; Plurisubharmonic function; EXISTENCE;
D O I
10.1016/j.bulsci.2015.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of the tangent cone to a positive plurisubharmonic or plurisuperharmonic current with a suitable condition. Some estimates of the growth of the Le long functions associated with the current and to its dd(c) are given to ensure the existence of the strict transform of this current. A second proof for the existence of the tangent cone is derived from these estimates. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:562 / 574
页数:13
相关论文
共 50 条
  • [1] Existence of tangent cones to plurisubharmonic currents
    Haggui, Fathi
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (03) : 299 - 308
  • [2] Extension of plurisubharmonic currents
    Dabbek, K
    Elkhadhra, F
    Mir, HE
    MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (03) : 455 - 481
  • [3] Extension of plurisubharmonic currents
    Khalifa Dabbek
    Fredj Elkhadhra
    Hassine El Mir
    Mathematische Zeitschrift, 2003, 245 : 455 - 481
  • [4] Uniqueness of Tangent Cones for Two-Dimensional Almost-Minimizing Currents
    De Lellis, Camillo
    Spadaro, Emanuele
    Spolaor, Luca
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (07) : 1402 - 1421
  • [5] Tangent cones to positive-(1,1) De Rham currents
    Bellettini, Costante
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (19-20) : 1025 - 1029
  • [6] EXISTENCE OF AREA MINIMIZING TANGENT CONES OF INTEGRAL CURRENTS WITH PRESCRIBED MEAN CURVATURE
    Frank Duzaar(Institut fur Augewandte Mathematik der Universitat Bonn
    ActaMathematicaScientia, 1995, (01) : 95 - 102
  • [7] Tangent cones to positive-(1,1) De Rham currents
    Bellettini, Costante
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 709 : 15 - 50
  • [8] INTERSECTIONS OF TANGENT CONES
    KENDIG, K
    MATHEMATISCHE ANNALEN, 1970, 185 (03) : 211 - &
  • [9] On regular tangent cones
    R. A. Khachatryan
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2017, 52 : 74 - 80
  • [10] Tangent star cones
    Simis, A
    Ulrich, B
    Vasconcelos, WV
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 483 : 23 - 59