Lq-error estimates for approximation of irregular functionals of random vectors

被引:0
|
作者
Taguchi, Dai [1 ]
Tanaka, Akihiro [2 ,3 ]
Yuasa, Tomooki [4 ]
机构
[1] Okayama Univ, Res Inst Interdisciplinary Sci, Dept Math, Kita Ku, 3-1-1 Tsushima Naka, Okayama 7008530, Japan
[2] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama Cho, Toyonaka, Osaka 5608531, Japan
[3] Sumitomo Mitsui Banking Corp, Chiyoda Ku, 1-1-2 Marunouchi, Tokyo 1000005, Japan
[4] Ritsumeikan Univ, Dept Math Sci, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
关键词
Avikainen's estimates; functions of bounded variation in Rd; Orlicz-Sobolev spaces; Sobolev spaces with variable exponents; fractional Sobolev spaces; Hardy-Littlewood maximal estimates; stochastic differential equations; Euler-Maruyama scheme; multilevel Monte Carlo method; MULTILEVEL MONTE-CARLO; STOCHASTIC DIFFERENTIAL-EQUATIONS; TRANSITION-PROBABILITY DENSITIES; EULER-MARUYAMA APPROXIMATION; DISCONTINUOUS DRIFT; STRONG-CONVERGENCE; SOBOLEV SPACES; SDES; SCHEME; BOUNDS;
D O I
10.1093/imanum/draa096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Avikainen (2009, On irregular functionals of SDEs and the Euler scheme. Finance Stoch., 13, 381-401) the author showed that, for any p, q is an element of [1,infinity), and any function f of bounded variation in R, it holds that E[|f (X) - f ((Z) over cap)|q] <= C(p, q)E[|X - (X) over cap (|p])1/p+1, where X is a one-dimensional random variable with a bounded density, and (X) over cap is an arbitrary random variable. In this article we will provide multidimensional versions of this estimate for functions of bounded variation in Rd, Orlicz-Sobolev spaces, Sobolev spaces with variable exponents and fractional Sobolev spaces. The main idea of our arguments is to use the Hardy-Littlewood maximal estimates and pointwise characterizations of these function spaces. We apply our main results to analyze the numerical approximation for some irregular functionals of the solution of stochastic differential equations.
引用
收藏
页码:840 / 873
页数:34
相关论文
共 50 条