Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits rnicroRNAs and short interfering RNAs

被引:789
作者
Baumberger, N [1 ]
Baulcombe, DC [1 ]
机构
[1] Sainsbury Lab, Norwich NR4 7UH, Norfolk, England
关键词
posttranscriptional regulation; ribonuclease; viral RNA; silencing;
D O I
10.1073/pnas.0505461102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
ARGONAUTE (AGO) RNA-binding proteins are involved in RNA silencing. They bind to short interfering RNAs (siRNAs) and microRNAs [miRNAs) through a conserved PAZ domain, and, in animals, they assemble into a multisubunit RNA-induced silencing complex (RISC). The mammalian AGO2, termed Slicer, directs siRNA- and miRNA-mediated cleavage of a target RNA. In Arabidopsis, there are 10 members of the AGO family, and the AGO1 protein is potentially the Slicer component in different RNA-silencing pathways. Here, we show that AGO1 selectively recruits certain classes of short silencing-related RNA. AGO1 is physically associated with miRNAs, transacting siRNAs, and transgene-derived siRNAs but excludes virus-derived siRNAs and 24-nt siRNAs involved in chromatin silencing. We also show that AGO1 has Slicer activity. It mediates the in vitro cleavage of a mir165 target RNA in a manner that depends on the sequence identity of amino acid residues in the PIWI domain that are predicted by homology with animal Slicer-competent AGO proteins to constitute the RNase catalytic center. However, unlike animals, we find no evidence that AGO1 Slicer is in a high molecular weight RNA-induced silencing complex. The Slicer activity fractionates as a complex of approximate to 150 kDa that likely constitutes the AGO1 protein and associated RNA without any other proteins. Based on sequence similarity, we predict that other Arabidopsis AGOs might have a similar catalytic activity but recruit different subsets of siRNAs or miRNAs.
引用
收藏
页码:11928 / 11933
页数:6
相关论文
共 60 条
[1]   Incorporation of terminal phosphorothioates into oligonucleotides [J].
Alefelder, S ;
Patel, BK ;
Eckstein, F .
NUCLEIC ACIDS RESEARCH, 1998, 26 (21) :4983-4988
[2]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[3]   RNA silencing in plants [J].
Baulcombe, D .
NATURE, 2004, 431 (7006) :356-363
[4]   A branched pathway for transgene-induced RNA silencing in plants [J].
Béclin, C ;
Boutet, S ;
Waterhouse, P ;
Vaucheret, H .
CURRENT BIOLOGY, 2002, 12 (08) :684-688
[5]   Agrobacterium transient expression system as a tool for the isolation of disease resistance genes:: application to the Rx2 locus in potato [J].
Bendahmane, A ;
Querci, M ;
Kanyuka, K ;
Baulcombe, DC .
PLANT JOURNAL, 2000, 21 (01) :73-81
[6]   AGO1 defines a novel locus of Arabidopsis controlling leaf development [J].
Bohmert, K ;
Camus, I ;
Bellini, C ;
Bouchez, D ;
Caboche, M ;
Benning, C .
EMBO JOURNAL, 1998, 17 (01) :170-180
[7]   The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis [J].
Carmell, MA ;
Xuan, ZY ;
Zhang, MQ ;
Hannon, GJ .
GENES & DEVELOPMENT, 2002, 16 (21) :2733-2742
[8]   A micrococcal nuclease homologue in RNAi effector complexes [J].
Caudy, AA ;
Ketting, RF ;
Hammond, SM ;
Denli, AM ;
Bathoorn, AMP ;
Tops, BBJ ;
Silva, JM ;
Myers, MM ;
Hannon, GJ ;
Plasterk, RHA .
NATURE, 2003, 425 (6956) :411-414
[9]   Fragile X-related protein and VIG associate with the RNA interference machinery [J].
Caudy, AA ;
Myers, M ;
Hannon, GJ ;
Hammond, SM .
GENES & DEVELOPMENT, 2002, 16 (19) :2491-2496
[10]  
Chen XM, 2002, DEVELOPMENT, V129, P1085