A Comparative Study of Magnetic Flux Ropes in the Nightside Induced Magnetosphere of Mars and Venus

被引:5
|
作者
Hara, Takuya [1 ]
Huang, Zesen [1 ,2 ,3 ]
Mitchell, David L. [1 ]
DiBraccio, Gina A. [4 ]
Brain, David A. [5 ]
Harada, Yuki [6 ]
Luhmann, Janet G. [1 ]
机构
[1] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[2] Univ Sci & Technol China, Hefei, Peoples R China
[3] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[5] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO USA
[6] Kyoto Univ, Dept Geophys, Kyoto, Japan
关键词
Mars; Venus; Flux rope; magnetosphere; magnetotail; MAVEN OBSERVATIONS; SOLAR-WIND; MESSENGER OBSERVATIONS; SEASONAL VARIABILITY; MARTIAN MAGNETOTAIL; SPATIAL STRUCTURE; ION ESCAPE; FIELD; PLASMA; RECONNECTION;
D O I
10.1029/2021JA029867
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyzed Mars Atmosphere and Volatile Evolution (MAVEN) and Venus Express (VEX) data of magnetic flux ropes observed in both Mars and Venus nightside induced magnetosphere, in order to understand their statistical characteristics and possible formation processes. We statistically identified 382 (286) events at Mars (Venus) via the minimum variance analysis and investigated the flux rope properties including their geometrical configurations of axial core field direction and spatial distributions. Interestingly, there is no significant difference with respect to the variety of the flux rope axial orientation between Mars and Venus, indicating that about at least one fourth of events do not necessitate magnetotail reconnection for their formations. However, the spatial distribution shows that flux ropes at Venus tend to be observed near the central plasma sheet, whereas those at Mars are more spread out. Moreover, the events tend to be observed more frequently in the -E hemisphere, where the solar wind electric field (E-SW) is pointing toward the planet, rather than in +E hemisphere, where the E-SW direction is away from the planet. The geographical distribution shows that flux ropes at Mars tend to be observed more frequently in the southern hemisphere where the strong crustal magnetic fields are primarily distributed. Therefore, such a tendency indicates that the Martian crustal magnetic fields could play significant roles on generating flux ropes in the nightside magnetosphere of Mars.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Comparison study of magnetic flux ropes in the ionospheres of Venus, Mars and Titan
    Wei, H. Y.
    Russell, C. T.
    Zhang, T. L.
    Dougherty, M. K.
    ICARUS, 2010, 206 (01) : 174 - 181
  • [2] A chain of magnetic flux ropes in the magnetotail of Mars
    Eastwood, J. P.
    Videira, J. J. H.
    Brain, D. A.
    Halekas, J. S.
    GEOPHYSICAL RESEARCH LETTERS, 2012, 39
  • [3] OBSERVATION OF MAGNETIC-FLUX ROPES IN THE VENUS IONOSPHERE
    RUSSELL, CT
    ELPHIC, RC
    NATURE, 1979, 279 (5714) : 616 - 618
  • [4] A statistical study of flux ropes in the Martian magnetosphere
    Briggs, J. A.
    Brain, D. A.
    Cartwright, M. L.
    Eastwood, J. P.
    Halekas, J. S.
    PLANETARY AND SPACE SCIENCE, 2011, 59 (13) : 1498 - 1505
  • [5] Kinetic models of magnetic flux ropes observed in the Earth magnetosphere
    Vinogradov, A. A.
    Vasko, I. Y.
    Artemyev, A. V.
    Yushkov, E. V.
    Petrukovich, A. A.
    Zelenyi, L. M.
    PHYSICS OF PLASMAS, 2016, 23 (07)
  • [6] Numerical simulation of small-scale low-β magnetic flux ropes in the upper ionospheres of Venus and Mars
    Shimazu, Hironori
    Tanaka, Motohiko
    PLANETARY AND SPACE SCIENCE, 2008, 56 (11) : 1542 - 1551
  • [7] MAGNETIC-FLUX ROPES IN THE VENUS IONOSPHERE - OBSERVATIONS AND MODELS
    ELPHIC, RC
    RUSSELL, CT
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1983, 88 (NA1): : 58 - 72
  • [8] Pressure balance across magnetic flux ropes in the ionosphere of Venus
    Ledvina, SA
    Nunes, DC
    Cravens, TE
    Tinker, JL
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2002, 107 (A6)
  • [9] GLOBAL CHARACTERISTICS OF MAGNETIC-FLUX ROPES IN THE VENUS IONOSPHERE
    ELPHIC, RC
    RUSSELL, CT
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1983, 88 (NA4): : 2993 - 3003
  • [10] AN OBSERVATIONAL STUDY OF THE NIGHTSIDE IONOSPHERES OF MARS AND VENUS WITH RADIO OCCULTATION METHODS
    ZHANG, MHG
    LUHMANN, JG
    KLIORE, AJ
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1990, 95 (A10) : 17095 - 17102