Tracking control for robot arm using neural network with simultaneous perturbation learning rule

被引:0
|
作者
Onishi, H [1 ]
Maeda, Y [1 ]
机构
[1] Kansai Univ, Suita, Osaka, Japan
来源
SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5 | 2002年
关键词
simultaneous perturbation; neural network; robot arm;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We report a tracking control for a robot arm using a neuro-controller. We adopted the simultaneous perturbation learning rule for a neuro-controller. The learning rule requires only two values of an error function. Twice operation yield modifying quantities of the weights in the network. Thus the neuro-controller can. learn an inverse of robot kinematics. Some simulation results arc shown.
引用
收藏
页码:3188 / 3191
页数:4
相关论文
共 50 条
  • [1] Active noise control using neural network with the simultaneous perturbation learning rule
    Tsuyama, Y
    Maeda, Y
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 1633 - 1634
  • [2] Simultaneous perturbation learning rule for Hopfield neural network
    Itonaga, S
    Maeda, Y
    KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 2001, 69 : 171 - 174
  • [3] Pulse density neural network system using simultaneous perturbation learning rule
    Maeda, Y
    Nakazawa, A
    Kanata, Y
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 980 - 984
  • [4] Active noise control using a functional link artificial neural network with the simultaneous perturbation learning rule
    Zhou, Ya-li
    Zhang, Qi-zhi
    Zhang, Tao
    Li, Xiao-dong
    Gan, Woon-seng
    SHOCK AND VIBRATION, 2009, 16 (03) : 325 - 334
  • [5] Hardware Implementation of a Pulse Density Neural Network Using Simultaneous Perturbation Learning Rule
    Yutaka Maeda
    Atsushi Nakazawa
    Yakichi Kanata
    Analog Integrated Circuits and Signal Processing, 1999, 18 : 153 - 162
  • [6] Hardware implementation of a pulse density neural network using simultaneous perturbation learning rule
    Maeda, Y
    Nakazawa, A
    Kanata, Y
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 1999, 18 (2-3) : 153 - 162
  • [7] An analog neural network circuit with simultaneous perturbation learning rule.
    Maeda, Y
    Kanata, Y
    ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : B94 - B98
  • [8] Application of recurrent neural network via simultaneous perturbation rule to flexible arm system
    Kubo, N
    Maeda, Y
    KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 2001, 69 : 540 - 543
  • [9] Learning Multisensory Neural Controllers for Robot Arm Tracking
    Wijesinghe, Lakshitha P.
    Antonelli, Marco
    Triesch, Jochen
    Shi, Bertram E.
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 4150 - 4157
  • [10] Robust neural network tracking controller using simultaneous perturbation stochastic approximation
    Song, Qing
    Spall, James C.
    Soh, Yeng Chai
    Ni, Jie
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (05): : 817 - 835