Optimal obstacle control problem

被引:0
|
作者
Zhu Li [1 ]
Li Xiu-hua [2 ]
Guo Xing-ming [2 ]
机构
[1] Xiangtan Univ, Dept Math, Xiangtan 411105, Hunan, Peoples R China
[2] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金;
关键词
obstacle problem; penalized method; optimality system; approximate problem;
D O I
10.1007/s10483-008-0501-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper we discuss some properties of the state operators of the optimal obstacle control problem for elliptic variational inequality. Existence, uniqueness and regularity of the optimal control problem are established. In addition, the approximation of the optimal obstacle problem is also studied.
引用
收藏
页码:559 / 569
页数:11
相关论文
共 50 条
  • [1] Optimal obstacle control problem
    Li Zhu
    Xiu-hua Li
    Xing-ming Guo
    Applied Mathematics and Mechanics, 2008, 29 : 559 - 569
  • [2] Optimal control of an obstacle problem
    Bergounioux, M
    APPLIED MATHEMATICS AND OPTIMIZATION, 1997, 36 (02): : 147 - 172
  • [3] Optimal control of an obstacle problem
    Universite d'Orleans, Orleans, France
    Appl Math Optim, 2 (147-172):
  • [4] Optimal control of an obstacle problem
    Bergounioux M.
    Applied Mathematics and Optimization, 1997, 36 (2): : 147 - 172
  • [5] Optimal obstacle control problem
    朱砾
    李秀华
    郭兴明
    AppliedMathematicsandMechanics(EnglishEdition), 2008, (05) : 559 - 569
  • [6] ADAPTIVE OPTIMAL CONTROL OF THE OBSTACLE PROBLEM
    Meyer, Ch.
    Rademacher, A.
    Wollner, W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : A918 - A945
  • [7] Optimal control for the Paneitz obstacle problem
    Ndiaye, Cheikh Birahim
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
  • [8] OPTIMAL CONTROL FOR THE INFINITY OBSTACLE PROBLEM
    Mawi, Henok
    Ndiaye, Cheikh Birahim
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (10) : 4219 - 4231
  • [9] Global minima for optimal control of the obstacle problem
    Ali, Ahmad Ahmad
    Deckelnick, Klaus
    Hinze, Michael
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26 (26)
  • [10] Optimal Control of the Obstacle Problem in a Perforated Domain
    Martin H. Strömqvist
    Applied Mathematics & Optimization, 2012, 66 : 239 - 255