The influence of twin boundary on lattice thermal conductivity of thermoelectric InSb

被引:10
|
作者
Ran, Yongpeng [1 ]
Lu, Zhongtao [1 ]
Zhang, Xiaolian [1 ]
Li, Wenjuan [1 ]
Duan, Bo [1 ]
Zhai, Pengcheng [1 ,2 ]
Li, Guodong [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Hubei Key Lab Theory & Applicat Adv Mat Mech, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
NONEQUILIBRIUM MOLECULAR-DYNAMICS; PHONON-SCATTERING; GRAIN-BOUNDARIES; INAS; TRANSPORT; SEMICONDUCTORS; PERFORMANCE; DEFECTS;
D O I
10.1063/5.0068007
中图分类号
O59 [应用物理学];
学科分类号
摘要
Twin boundaries (TBs) can increase interface scattering to reduce the lattice thermal conductivity. InSb has good electronic transport properties, but its high thermal conductivity constrains its thermoelectric application. In this work, we aim to study the role of TBs on lattice thermal conductivity of InSb. We use non-equilibrium molecular dynamics simulation to investigate how the TB spacing and orientation influence the lattice thermal conductivity of InSb. We find that TBs can hinder the heat flow, leading to decreased temperature gradient and, hence, remarkably reduced lattice thermal conductivity. The relationship between kappa(L) and lambda can be described by a proportional function. Nanotwinned InSb with TB spacing of 1.1 nm has a lattice thermal conductivity of 12.6 W/m K, a decrease in 22.2% compared with its single crystal (16.2 W/m K). We also find that a minimum lattice thermal conductivity of InSb can be obtained when the TB orientation is perpendicular to the direction of heat flow. These findings provide a theoretical guidance for TBs engineering to reduce the thermal conductivity of thermoelectric materials.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] THERMAL CONDUCTIVITY AND THERMOELECTRIC POWER OF INSB AT LOW TEMPERATURES
    SHALYT, SS
    TAMARIN, PV
    SOVIET PHYSICS SOLID STATE,USSR, 1965, 6 (08): : 1843 - +
  • [2] Lattice Thermal Conductivity in Thermoelectric Materials
    Shen Jia-Jun
    Fang Teng
    Fu Tie-Zheng
    Xin Jia-Zhan
    Zhao Xin-Bing
    Zhu Tie-Jun
    JOURNAL OF INORGANIC MATERIALS, 2019, 34 (03) : 260 - 268
  • [3] Ultralow Lattice Thermal Conductivity in SnTe by Incorporating InSb
    Zhang, Jing-Wen
    Wu, Zhen-Wang
    Xiang, Bo
    Zhou, Ning-Ning
    Shi, Jia-Li
    Zhang, Jiu-Xing
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (19) : 21863 - 21870
  • [4] Reducing the lattice thermal conductivity in thermoelectric materials
    Klemens, P. G.
    Thermal Conductivity 27: Thermal Expansion 15, 2005, 27 : 58 - 64
  • [5] Thermal conductivity and lattice dynamics of thermoelectric oxychalcogenide BiCuTeO
    Guenfoud, M.
    Hamouda, M.
    CHALCOGENIDE LETTERS, 2023, 20 (10): : 697 - 708
  • [6] LONGITUDINAL AND TRANSVERSE PHONONS IN LATTICE THERMAL CONDUCTIVITY OF GAAS AND INSB - REPLY
    VERMA, GS
    BHANDARI, CM
    JOSHI, YP
    PHYSICAL REVIEW B, 1971, 3 (10): : 3574 - &
  • [7] ROLE OF LONGITUDINAL AND TRANSVERSE PHONONS IN LATTICE THERMAL CONDUCTIVITY OF GAAS AND INSB
    BHANDARI, CM
    VERMA, GS
    PHYSICAL REVIEW, 1965, 140 (6A): : 2101 - &
  • [8] Lattice thermal conductivity of nanostructured thermoelectric materials based on PbTe
    Koh, Yee Kan
    Vineis, C. J.
    Calawa, S. D.
    Walsh, M. P.
    Cahill, David G.
    APPLIED PHYSICS LETTERS, 2009, 94 (15)
  • [9] Low lattice thermal conductivity and good thermoelectric performance of cinnabar
    Zhao, Yinchang
    Dai, Zhenhong
    Lian, Chao
    Zeng, Shuming
    Li, Geng
    Ni, Jun
    Meng, Sheng
    PHYSICAL REVIEW MATERIALS, 2017, 1 (06):
  • [10] Development of novel thermoelectric materials by reduction of lattice thermal conductivity
    Wan, Chunlei
    Wang, Yifeng
    Wang, Ning
    Norimatsu, Wataru
    Kusunoki, Michiko
    Koumoto, Kunihito
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2010, 11 (04)