Interplay between interior and boundary geometry in Gromov hyperbolic spaces

被引:11
|
作者
Jordi, Julian [1 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Hyperbolic spaces; Boundary at infinity; Quasimetric; Quasisymmetric maps; Quasimoebius maps;
D O I
10.1007/s10711-010-9472-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that two visual and geodesic Gromov hyperbolic metric spaces are roughly isometric if and only if their boundaries at infinity, equipped with suitable quasimetrics, are bilipschitz-quasimoebius equivalent. Similarly, they are quasi-isometric if and only if their boundaries are power quasimoebius equivalent.
引用
收藏
页码:129 / 154
页数:26
相关论文
共 50 条
  • [1] Interplay between interior and boundary geometry in Gromov hyperbolic spaces
    Julian Jordi
    Geometriae Dedicata, 2010, 149 : 129 - 154
  • [2] Boundary rigidity of Gromov hyperbolic spaces
    Liang, Hao
    Zhou, Qingshan
    GEOMETRIAE DEDICATA, 2024, 218 (05)
  • [3] Gromov hyperbolic spaces
    Väisälä, J
    EXPOSITIONES MATHEMATICAE, 2005, 23 (03) : 187 - 231
  • [4] ROUGH ISOMETRY BETWEEN GROMOV HYPERBOLIC SPACES AND UNIFORMIZATION
    Lindquist, Jeff
    Shanmugalingam, Nageswari
    ANNALES FENNICI MATHEMATICI, 2021, 46 (01): : 449 - 464
  • [5] Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces
    Fishman, Lior
    Simmons, David
    Urbanski, Mariusz
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 254 (1215) : 1 - +
  • [6] Embeddings of Gromov hyperbolic spaces
    M. Bonk
    O. Schramm
    Geometric & Functional Analysis GAFA, 2000, 10 : 266 - 306
  • [7] Embeddings of Gromov hyperbolic spaces
    Bonk, M
    Schramm, O
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (02) : 266 - 306
  • [8] Uniformizing gromov hyperbolic spaces - Introduction
    Bonk, M
    Heinonen, J
    Koskela, P
    ASTERISQUE, 2001, (270) : 1 - +
  • [9] Sphericalizations and applications in Gromov hyperbolic spaces
    Zhou, Qingshan
    Li, Yaxiang
    Li, Xining
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 509 (01)
  • [10] Potential Theory on Gromov Hyperbolic Spaces
    Kemper, Matthias
    Lohkamp, Joachim
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2022, 10 (01): : 394 - 431