Effect of imperfect experimental condition on generation of Schrodinger cat state

被引:3
|
作者
Zhang Na-Na [1 ]
Li Shu-Jing [1 ,2 ]
Yan Hong-Mei [1 ]
He Ya-Ya [1 ]
Wang Hai [1 ,2 ]
机构
[1] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Shanxi, Peoples R China
[2] Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger cat state; photon subtraction scheme; Wigner function; fidelity; QUANTUM STATES; SUPERPOSITIONS;
D O I
10.7498/aps.67.20180381
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Schrodinger cat state is an important non-classical state, and it can be used in quantum teleportation, quantum computation and quantum repeater. Schrodinger cat state is usually obtained experimentally by subtracting one photon from a squeezed-vacuum state. The fidelity between a photon-subtracted squeezed state and a cat state can be very high under suitable parameters. However, the quality of the generated state will be affected by the imperfect experimental conditions. In this paper, the effect of imperfect experimental conditions on the generation of cat state is theoretically calculated and analyzed. The input squeezed-vacuum field is represented by Weyl characteristic function, which contains the fluctuation variance of the squeezed and amplified noises. The characteristic function of generated state is obtained by using the transmission matrix of beam splitter and the measurement operator of single-photon detector. We acquire the expression of Wigner function of generated state by the Fourier transform of the Weyl characteristic function. The fidelity is calculated by using the formula F = 1/pi integral d(2)zeta C-1 (sigma) C vertical bar cat-> (zeta), where C-1 (zeta) and C vertical bar cat-> represent Weyl Tz. characteristic function of the generated state and the Schrodinger cat state, respectively. The imperfection of the input squeezed state, the imperfection of the single-photon detector and the loss of the balanced homodyne detection are included in our theoretical model. We calculate the Wigner function at the phase-space origin W(0) and the fidelity in terms of different experimental parameters. The results show that the fidelity and negativity of W(0) decrease with squeezing purity decreasing. A pure squeezed-vacuum state is composed of even photon number states. In the case of impure squeezing, some odd photon number states appear in the photon number distribution. After subtracting one photon from the impure squeezing state, the generated state consists of not only odd photon number state but also even photon states, which degrades the fidelity of the generated state. The lower squeezing purity is required to meet the demand for W(0)<0 under the condition of higher squeezing degree. There is an optimal squeezing degree to maximize the fidelity of generated state with impure squeezing. The use of inefficient on-ff single-photon detector and the loss of the balanced homodyne detection will further reduce the fidelity of the generated state. Under the practical experimental condition: squeezing degree s = -3 dB, the squeezing purity mu = 99% and the quantum efficiency of balanced homodyne detection eta = 98%, the fidelity of generated state can reach 0.88 with using a commercially available on-off single-photon detector. This work can provide theoretical guidance for generating a high-quality Schrodinger cat state.
引用
收藏
页数:9
相关论文
共 30 条
  • [1] Generation of highly pure Schrodinger's cat states and real-time quadrature measurements via optical filtering
    Asavanant, Warit
    Nakashima, Kota
    Shiozawa, Yu
    Yoshikawa, Jun-Ichi
    Furusawa, Akira
    [J]. OPTICS EXPRESS, 2017, 25 (26): : 32227 - 32242
  • [2] Dakna M, 1997, PHYS REV A, V55, P3184, DOI 10.1103/PhysRevA.55.3184
  • [3] The squeezing of angular momentum and its evolutions in atomic Schrodinger cat states
    Dong, CH
    [J]. ACTA PHYSICA SINICA, 2003, 52 (02) : 337 - 344
  • [4] Synthesizing arbitrary quantum states in a superconducting resonator
    Hofheinz, Max
    Wang, H.
    Ansmann, M.
    Bialczak, Radoslaw C.
    Lucero, Erik
    Neeley, M.
    O'Connell, A. D.
    Sank, D.
    Wenner, J.
    Martinis, John M.
    Cleland, A. N.
    [J]. NATURE, 2009, 459 (7246) : 546 - 549
  • [5] Hyukjoon K, 2015, PHYS REV A, V91
  • [6] Preparation of Schrodinger cat state via a mesoscopic LC circuit
    Ji, YH
    Luo, HM
    Ye, ZQ
    Wu, YY
    Chen, MY
    [J]. ACTA PHYSICA SINICA, 2004, 53 (08) : 2534 - 2538
  • [7] Ultrafast creation of large Schrodinger cat states of an atom
    Johnson, K. G.
    Wong-Campos, J. D.
    Neyenhuis, B.
    Mizrahi, J.
    Monroe, C.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [8] Nonclassicality of a photon-subtracted Gaussian field
    Kim, MS
    Park, E
    Knight, PL
    Jeong, H
    [J]. PHYSICAL REVIEW A, 2005, 71 (04):
  • [9] Experimentally realizable characterizations of continuous-variable Gaussian states
    Kim, MS
    Lee, J
    Munro, WJ
    [J]. PHYSICAL REVIEW A, 2002, 66 (03): : 303011 - 303014
  • [10] Laghaout A, 2013, C LAS EL OPT EUR INT, V1, P1