Comparison of uncertainties in land-use change fluxes from bookkeeping model parameterisation

被引:29
|
作者
Bastos, Ana [1 ,2 ]
Hartung, Kerstin [1 ,5 ]
Nuetzel, Tobias B. [1 ]
Nabel, Julia E. M. S. [3 ]
Houghton, Richard A. [4 ]
Pongratz, Julia [1 ,3 ]
机构
[1] Ludwig Maximilian Univ Munich, Dept Geog, D-80333 Munich, Germany
[2] Max Planck Inst Biogeochem, Dept Biogeochem Integrat, D-07745 Jena, Germany
[3] Max Planck Inst Meteorol, D-20146 Hamburg, Germany
[4] Woodwell Climate Res Ctr, Falmouth, MA 02540 USA
[5] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphere, Oberpfaffenhofen, Germany
关键词
CARBON BUDGET; COVER CHANGE; CO2; EMISSIONS; NET; GROSS; RECONSTRUCTIONS; DEFINITION; MANAGEMENT; HOLOCENE;
D O I
10.5194/esd-12-745-2021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Fluxes from deforestation, changes in land cover, land use and management practices (F-LUC for simplicity) contributed to approximately 14% of anthropogenic CO2 emissions in 2009-2018. Estimating F-LUC accurately in space and in time remains, however, challenging, due to multiple sources of uncertainty in the calculation of these fluxes. This uncertainty, in turn, is propagated to global and regional carbon budget estimates, hindering the compilation of a consistent carbon budget and preventing us from constraining other terms, such as the natural land sink. Uncertainties in F-LUC estimates arise from many different sources, including differences in model structure (e.g. process based vs. bookkeeping) and model parameterisation. Quantifying the uncertainties from each source requires controlled simulations to separate their effects. Here, we analyse differences between the two bookkeeping models used regularly in the global carbon budget estimates since 2017: the model by Hansis et al. (2015) (BLUE) and that by Houghton and Nassikas (2017) (HN2017). The two models have a very similar structure and philosophy, but differ significantly both with respect to F-LUC intensity and spatiotemporal variability. This is due to differences in the land-use forcing but also in the model parameterisation. We find that the larger emissions in BLUE compared to HN2017 are largely due to differences in C densities between natural and managed vegetation or primary and secondary vegetation, and higher allocation of cleared and harvested material to fast turnover pools in BLUE than in HN2017. Besides parameterisation and the use of different forcing, other model assumptions cause differences: in particular that BLUE represents gross transitions which leads to overall higher carbon losses that are also more quickly realised than HN2017.
引用
收藏
页码:745 / 762
页数:18
相关论文
共 50 条
  • [1] Uncertainties in the land-use flux resulting from land-use change reconstructions and gross land transitions
    Bayer, Anita D.
    Lindeskog, Mats
    Pugh, Thomas A. M.
    Anthoni, Peter M.
    Fuchs, Richard
    Arneth, Almut
    EARTH SYSTEM DYNAMICS, 2017, 8 (01) : 91 - 111
  • [2] Bookkeeping estimates of the net land-use change flux - a sensitivity study with the CMIP6 land-use dataset
    Hartung, Kerstin
    Bastos, Ana
    Chini, Louise
    Ganzenmueller, Raphael
    Havermann, Felix
    Hurtt, George C.
    Loughran, Tammas
    Nabel, Julia E. M. S.
    Nuetzel, Tobias
    Obermeier, Wolfgang A.
    Pongratz, Julia
    EARTH SYSTEM DYNAMICS, 2021, 12 (02) : 763 - 782
  • [3] Exploring spatial data uncertainties in land-use change scenarios
    Dendoncker, N.
    Schmit, C.
    Rounsevell, M.
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2008, 22 (09) : 1013 - 1030
  • [4] Regional Carbon Fluxes from Land-Use Conversion and Land-Use Management in Northeast India
    Hinge, Gilbert
    Surampalli, Rao Y.
    Goyal, Manish Kumar
    JOURNAL OF HAZARDOUS TOXIC AND RADIOACTIVE WASTE, 2018, 22 (04)
  • [5] LAND SUITABILITY MODEL FOR THE EVALUATION OF LAND-USE CHANGE
    ROBERTS, MC
    RANDOLPH, JC
    CHIESA, JR
    ENVIRONMENTAL MANAGEMENT, 1979, 3 (04) : 339 - 352
  • [6] Impacts of land use, climate change and hydrological model structure on nitrate fluxes: Magnitudes and uncertainties
    Seidenfaden, Ida Karlsson
    Sonnenborg, Torben Obel
    Borgesen, Christen Duus
    Trolle, Dennis
    Olesen, Jorgen Eivind
    Refsgaard, Jens Christian
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 830
  • [7] Country-level estimates of gross and net carbon fluxes from land use, land-use change and forestry
    Obermeier, Wolfgang Alexander
    Schwingshackl, Clemens
    Bastos, Ana
    Conchedda, Giulia
    Gasser, Thomas
    Grassi, Giacomo
    Houghton, Richard A.
    Tubiello, Francesco Nicola
    Sitch, Stephen
    Pongratz, Julia
    EARTH SYSTEM SCIENCE DATA, 2024, 16 (01) : 605 - 645
  • [8] A Land-Use Change Model to Support Land-Use Planning in the Mekong Delta (MEKOLUC)
    Truong, Quang Chi
    Nguyen, Thao Hong
    Tatsumi, Kenichi
    Pham, Vu Thanh
    Tri, Van Pham Dang
    LAND, 2022, 11 (02)
  • [9] About the Uncertainties in Model Design and Their Effects: An Illustration with a Land-Use Model
    Schindler, Julia
    JASSS-THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION, 2013, 16 (04):
  • [10] LAND-USE CHANGE
    HILL, RD
    GEOFORUM, 1984, 15 (03) : 457 - 461