Nontrivial solutions for some singular critical growth semilinear elliptic equations

被引:3
|
作者
He, Xiaoming [1 ]
Zou, Wenming [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
singular elliptic equation; Hardy-Sobolev critical exponent; nontrivial solutions; variational method;
D O I
10.1016/j.na.2007.04.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a bounded domain in R-N (N >= 5) with smooth boundary partial derivative Omega and the origin 0 epsilon Omega, mu < <(mu)over bar> = ((N - 2)/2)(2), 2* = 2N/(N - 2), K(x) is a bounded positive function on (Omega) over bar. We prove the existence results for nontrivial solutions to the Dirichlet problem -Delta u = mu u/ |x|(2) + K(x)|u|2*-2 + lambda u in Omega, u = 0 on delta Omega, for suitable numbers mu and lambda. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3719 / 3732
页数:14
相关论文
共 50 条