The dual of a generalized weighted Bergman space

被引:0
|
作者
Chailuek, Kamthorn [1 ]
Senmoh, Marisa [2 ]
机构
[1] Prince Songkla Univ, Fac Sci, Dept Math & Stat, Appl Anal Res Unit, Hat Yai, Thailand
[2] Rajamangala Univ Technol Srivijaya, Fac Liberal Arts, Gen Educ Program, Songkhla, Thailand
关键词
Bergman space; Dual space; Generalized Bergman space; Integral pairing;
D O I
10.1007/s43036-020-00084-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized weighted Bergman space H(B-d, lambda) is defined as a reproducing kernel Hilbert space of holomorphic functions on the open unit ball B-d subset of C-d for all lambda > 0. When lambda > d, it is identical to the weighted Bergman space HL2(B-d, mu(lambda)). We prove that the dual space H(B-d, alpha)* can be identified with another generalized weighted Bergman space H(B-d, beta) under the pairing < f, g >(gamma) = integral(Bd) A(lambda)f(x)<(B(lambda)g(z))over bar>d mu(gamma+2n)(z), for f is an element of H(B-d, alpha), g is an element of H(B-d, beta), where n = [d/2], gamma = alpha+beta/2 and A(lambda), B-lambda are operators related to the number operator N =Sigma(d)(i=1) z(i) partial derivative/partial derivative(zi).
引用
收藏
页码:1729 / 1737
页数:9
相关论文
共 50 条