SOME OSCILLATION CRITERIA FOR SECOND-ORDER DELAY DYNAMIC EQUATIONS

被引:1
|
作者
Higgins, Raegan [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
关键词
Oscillation; delay equation; time scale; upper solution; lower solution;
D O I
10.2298/AADM100425018H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the oscillation of second-order delay dynamic equations. Our results extend and improve known results for oscillation of second-order differential equations that have been established by ERBE [Canad. Math. Bull. 16 (1973), 49-56]. We apply results from the theory of upper and lower solutions and give some examples to illustrate the main results.
引用
收藏
页码:322 / 337
页数:16
相关论文
共 50 条
  • [1] Oscillation criteria for second-order nonlinear delay dynamic equations
    Erbe, L.
    Peterson, A.
    Saker, S. H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) : 505 - 522
  • [2] Oscillation criteria of second-order delay dynamic equations on time scales
    Han, Zhenlai
    Sun, Shurong
    Sui, Meizhen
    SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 1, PROCEEDINGS, 2007, : 406 - +
  • [3] Oscillation criteria for second-order delay dynamic equations on time scales
    Han, Zhenlai
    Shi, Bao
    Sun, Shurong
    ADVANCES IN DIFFERENCE EQUATIONS, 2007, 2007 (1)
  • [4] Oscillation criteria for second-order nonlinear neutral delay dynamic equations
    Agarwal, RP
    O'Regan, D
    Saker, SH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 300 (01) : 203 - 217
  • [5] Oscillation Criteria for Second-Order Delay Dynamic Equations on Time Scales
    Zhenlai Han
    Bao Shi
    Shurong Sun
    Advances in Difference Equations, 2007
  • [6] OSCILLATION CRITERIA FOR SECOND-ORDER NONLINEAR DELAY EQUATIONS
    ERBE, L
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1973, 16 (01): : 49 - 56
  • [7] Oscillation criteria for second-order delay differential equations
    Dzurina, J
    Stavroulakis, IP
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 140 (2-3) : 445 - 453
  • [8] Some oscillation results for second-order nonlinear delay dynamic equations
    Zhang, Chenghui
    Li, Tongxing
    APPLIED MATHEMATICS LETTERS, 2013, 26 (12) : 1114 - 1119
  • [9] Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations
    Wu, Hong-Wu
    Zhuang, Rong-Kun
    Mathsen, Ronald M.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 178 (02) : 321 - 331
  • [10] Oscillation criteria for second-order nonlinear delay dynamic equations of neutral type
    Zhang, Ming
    Chen, Wei
    El-Sheikh, M. M. A.
    Sallam, R. A.
    Hassan, A. M.
    Li, Tongxing
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,