UNLIKELY INTERSECTIONS OVER FINITE FIELDS: POLYNOMIAL ORBITS IN SMALL SUBGROUPS

被引:0
|
作者
Merai, Laszlo [1 ]
Shparlinski, Igor E. [2 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, Altenberger Str 69, A-4040 Linz, Austria
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
奥地利科学基金会; 澳大利亚研究理事会;
关键词
Polynomial iterations; polynomials semigroups; multiplicative subgroup; finite fields; unlikely intersection; MORDELL-LANG CONJECTURE; RATIONAL FUNCTIONS; MAPS; SUMS;
D O I
10.3934/dcds.2020070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We estimate the frequency of polynomial iterations which fall in a given multiplicative subgroup of a finite field of p elements. We also give a lower bound on the size of the subgroup which is multiplicatively generated by the first N elements in an orbit. We derive these from more general results about sequences of compositions on a fixed set of polynomials.
引用
收藏
页码:1065 / 1073
页数:9
相关论文
共 50 条