The Randic index and the diameter of graphs

被引:7
|
作者
Yang, Yiting [2 ]
Lu, Linyuan [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Randic index; Diameter; MOLECULAR CONNECTIVITY;
D O I
10.1016/j.disc.2011.03.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Randic index R(G) of a graph G is defined as the sum of 1/root d(u)d(v) over all edges uv of G, where d(u) and d(v) are the degrees of vertices u and v. respectively. Let D(G) be the diameter of G when G is connected. Aouchiche et al. (2007)[1] conjectured that among all connected graphs G on n vertices the path P-n achieves the minimum values for both R(G)/D(G) and R(G) - D(G). We prove this conjecture completely. In fact, we prove a stronger theorem: If G is a connected graph, then R(G) - 1/2D(G) >= root 2 - 1, with equality if and only if G is a path with at least three vertices. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1333 / 1343
页数:11
相关论文
共 50 条
  • [1] On the Randic index of unicyclic graphs with fixed diameter
    Song, Mingjun
    Pan, Xiang-Feng
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2008, 60 (02) : 523 - 538
  • [2] A proof for a conjecture on the Randic index of graphs with diameter
    Liu, Jianxi
    Liang, Meili
    Cheng, Bo
    Liu, Bolian
    APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 752 - 756
  • [3] Notes on "A proof for a conjecture on the Randic index of graphs with diameter"
    Li, Shasha
    Lian, Huishu
    APPLIED MATHEMATICS LETTERS, 2012, 25 (04) : 784 - 786
  • [4] General Randic index of unicyclic graphs with given diameter
    Alfuraidan, Monther Rashed
    Das, Kinkar Chandra
    Vetrik, Tomas
    Balachandran, Selvaraj
    DISCRETE APPLIED MATHEMATICS, 2022, 306 : 7 - 16
  • [6] On the Randic index of graphs
    Dalfo, C.
    DISCRETE MATHEMATICS, 2019, 342 (10) : 2792 - 2796
  • [7] Randic index and the diameter of a graph
    Dvorak, Zdenek
    Lidicky, Bernard
    Skrekovski, Riste
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (03) : 434 - 442
  • [8] RANDIC INDEX AND EIGENVALUES OF GRAPHS
    Yu, Guihai
    Feng, Lihua
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (02) : 713 - 721
  • [9] On the Randic index and girth of graphs
    Liang, Meili
    Liu, Bolian
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (1-2) : 212 - 216
  • [10] ON THE ENTIRE RANDIC INDEX OF GRAPHS
    Saleh, A.
    Cangul, Ismail Naci
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (08): : 1559 - 1569