The S5 extensions of degree 6 with minimum discriminant

被引:2
|
作者
Ford, D
Pohst, M
Daberkow, M
Haddad, N
机构
[1] Concordia Univ, Dept Comp Sci, Montreal, PQ H3G 1M8, Canada
[2] Tech Univ Berlin, Fachbereich Math 3, D-10623 Berlin, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1080/10586458.1998.10504361
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The algebraic number fields of degree 6 having Galois group S-5 and minimum discriminant are determined for signatures (0, 3), (2, 2) and (6, 0). The fields F-0, F-2, F-6 are generated by roots of f(0)(t) = t(6) + 3t(4) + 2t(3) + 6t(2) + 1, f(2)(t) = t(6) - 2t(4) + 12t(3) - 16t + 8, and f(6)(t) = t(6) - 18t(4) + 9t(3) + 90t(2) - 70t - 69 respectively. Each of these fields is unique up to isomorphism. This completes the enumeration of primitive sextic fields with minimum discriminant for all possible combinations of Galois group and signature.
引用
收藏
页码:121 / 124
页数:4
相关论文
共 50 条