Thermal shock resistance of magnesia spinel refractories-Investigation with the concept of configurational forces

被引:41
|
作者
Gruber, Dietmar [1 ]
Sistaninia, Masoud [2 ,3 ]
Fasching, Christoph [2 ]
Kolednik, Otmar [3 ]
机构
[1] Univ Leoben, Chair Ceram, A-8700 Leoben, Austria
[2] Leoben Forsch GmbH, Mat Ctr, A-8700 Leoben, Austria
[3] Austrian Acad Sci, Erich Schmid Inst Mat Sci, A-8700 Leoben, Austria
关键词
Magnesia spinel refractory; Configurational force concept; J-integral; Concrete damaged plasticity; Damage evolution; PLASTIC-DAMAGE MODEL; CRACK DRIVING-FORCE; BEHAVIOR; FRACTURE;
D O I
10.1016/j.jeurceramsoc.2016.07.001
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In magnesia-spinel refractories, spinel inclusions are embedded in a magnesia matrix in order to increase the thermal shock resistance by micro-crack toughening. The paper investigates damage evolution in the material during the cooling at the end of the production process by a sophisticated numerical analysis. After a stress-strain analysis on a large representative volume element, the development of the damage zone between spinel grains is simulated with the concrete damaged plasticity model of ABAQUS. Application of the concept of configurational forces allows the physically correct determination of the driving force for cracks in the elastic quasi-plastic matrix material. The results demonstrate that inherent matrix cracks are unable to grow during the cooling, but they strongly influence the initiation and development of the damage zone. The pronounced damage initiation, in combination with the low crack driving force, is the main reason for the good thermal shock resistance of magnesia spinel refractories. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4301 / 4308
页数:8
相关论文
共 50 条
  • [1] Effect of Spinel-Coated Aggregates on Thermal Shock Resistance and Cement Clinker Corrosion Resistance of Magnesia Spinel Refractories
    Zhu F.
    Dai Y.
    Yan W.
    Xu Y.
    Wang D.
    Wang C.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2023, 51 (03): : 658 - 668
  • [2] THERMAL SHOCK RESISTANCE OF CARBON-MAGNESIA REFRACTORIES.
    Landy, R.A.
    Darroudi, T.
    Hughes, R.H.
    1600, (49):
  • [3] HOT STRENGTH AND THERMAL-SHOCK RESISTANCE OF MAGNESIA-CARBON REFRACTORIES
    FRANKLIN, SA
    TUCKER, BJS
    BRITISH CERAMIC TRANSACTIONS, 1995, 94 (04): : 151 - 156
  • [4] Thermal shock resistance of magnesia chrome refractories-experimental and criterial evaluation
    Wojsa, J.
    Podworny, J.
    Suwak, R.
    CERAMICS INTERNATIONAL, 2013, 39 (01) : 1 - 12
  • [5] Effect of in-situ generated MgAl2O4 spinel on thermal shock resistance of magnesia-zirconia refractories
    Liu, Zhongfei
    Liang, Xiaocheng
    Luo, Xudong
    Zhao, Jialiang
    Wu, Feng
    CERAMICS INTERNATIONAL, 2024, 50 (19) : 35936 - 35945
  • [6] Thermal shock behaviour of magnesia-spinel composites
    Aksel, C
    Rand, B
    Riley, FL
    Warren, PD
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (09) : 2839 - 2845
  • [7] THERMAL SHOCK DAMAGE RESISTANCE OF REFRACTORIES
    AINSWORTH, JH
    HERRON, RH
    AMERICAN CERAMIC SOCIETY BULLETIN, 1973, 52 (04): : 408 - 408
  • [8] THERMAL SHOCK DAMAGE RESISTANCE OF REFRACTORIES
    AINSWORTH, JH
    HERRON, RH
    AMERICAN CERAMIC SOCIETY BULLETIN, 1974, 53 (07): : 533 - +
  • [9] Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO-C pellets
    Zhu, Tianbin
    Li, Yawei
    Sang, Shaobai
    Xie, Zhipeng
    MATERIALS & DESIGN, 2017, 124 : 16 - 23
  • [10] Enhanced mechanical properties and thermal shock resistance of magnesia refractories via in situ formation of tetragonal zirconia
    Jin, Endong
    Zou, Chao
    Ding, Donghai
    Xiao, Guoqing
    Duan, Feng
    Jiang, Bin
    Han, Shengli
    Zheng, Kaihong
    CERAMICS INTERNATIONAL, 2024, 50 (09) : 14968 - 14979