Invariant hyperkahler structures on the cotangent bundles of Hermitian symmetric spaces

被引:0
|
作者
Mykytyuk, IV [1 ]
机构
[1] Lviv Polytech Natl Univ, Inst Appl Math & Fundamental Sci, Lvov, Ukraine
关键词
D O I
10.1070/SM2003v194n08ABEH000763
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G/K be an irreducible Hermitian symmetric space of compact type with standard homogeneous complex structure. Then the real symplectic manifold (T*(G/K), Omega) has the natural complex structure J(-). All G-invariant Kahler structures (J, Omega) on G-invariant subdomains of T*(G/K) anticommuting with J(-) are constructed. Each hypercomplex structure of this kind, equipped with a suitable metric, defines a hyperkahler structure. As an application, a new proof of the theorem of Harish-Chandra and Moore for Hermitian symmetric spaces is obtained.
引用
收藏
页码:1225 / 1250
页数:26
相关论文
共 50 条
  • [1] Hyperkahler metrics on cotangent bundles of Hermitian symmetric spaces
    Biquard, O
    Gauduchon, P
    GEOMETRY AND PHYSICS, 1997, 184 : 287 - 298
  • [2] Projective superspace and hyperkahler sigma models on cotangent bundles of Hermitian symmetric spaces
    Arai, Masato
    Kuzenko, Sergei M.
    Lindstrom, Ulf
    PARTICLES, STRINGS, AND COSMOLOGY, 2007, 957 : 293 - +
  • [3] Hyperkahler sigma models on cotangent bundles of Hermitian symmetric spaces using projective superspace
    Arai, Masato
    Kuzenko, Sergei M.
    Lindstrom, Ulf
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (02):
  • [4] Invariant Kahler structures on the cotangent bundles of compact symmetric spaces
    Mykytyuk, IV
    NAGOYA MATHEMATICAL JOURNAL, 2003, 169 : 191 - 217
  • [5] Cotangent bundles over all the Hermitian symmetric spaces
    Arai, Masato
    Baba, Kurando
    XXIII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-23), 2016, 670
  • [6] Chiral formulation for hyperKahler sigma-models on cotangent bundles of symmetric spaces
    Kuzenko, Sergei M.
    Novak, Joseph
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (12):
  • [7] Hyperkahler metrics on cotangent bundles
    Feix, B
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2001, 532 : 33 - 46
  • [8] Invariant Kählerian structures on the cotangent bundles of reductive spaces
    Mykytyuk I.V.
    Journal of Mathematical Sciences, 2011, 178 (4) : 373 - 383
  • [9] Complexified Hermitian Symmetric Spaces, Hyperkahler Structures, and Real Group Actions
    Bremigan, Ralph J.
    TRANSFORMATION GROUPS, 2024, 29 (02) : 517 - 559
  • [10] Polar supermultiplets, hermitian symmetric spaces and hyperkahler metrics
    Arai, Masato
    Kuzenko, Sergei M.
    Lindstroem, Ulf
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (12):