Cooperative Machine Learning Techniques for Cloud Intrusion Detection

被引:3
|
作者
Chkirbene, Zina [1 ]
Hamila, Ridha [1 ]
Erbad, Aiman [2 ]
Kiranyaz, Serkan [1 ]
Al-Emadi, Nasser [1 ]
Hamdi, Mounir [2 ]
机构
[1] Qatar Univ, Coll Engn, Doha, Qatar
[2] Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci & Engn, Div Informat & Comp Technol, Doha, Qatar
关键词
Cloud security; secure packet classifier; firewalls; intrusion detection systems; machine learning techniques; ANOMALIES; SYSTEM;
D O I
10.1109/IWCMC51323.2021.9498809
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Cloud computing is attracting a lot of attention in the past few years. Although, even with its wide acceptance, cloud security is still one of the most essential concerns of cloud computing. Many systems have been proposed to protect the cloud from attacks using attack signatures. Most of them may seem effective and efficient; however, there are many drawbacks such as the attack detection performance and the system maintenance. Recently, learning-based methods for security applications have been proposed for cloud anomaly detection especially with the advents of machine learning techniques. However, most researchers do not consider the attack classification which is an important parameter for proposing an appropriate countermeasure for each attack type. In this paper, we propose a new firewall model called Secure Packet Classifier (SPC) for cloud anomalies detection and classification. The proposed model is constructed based on collaborative filtering using two machine learning algorithms to gain the advantages of both learning schemes. This strategy increases the learning performance and the system's accuracy. To generate our results, a publicly available dataset is used for training and testing the performance of the proposed SPC. Our results show that the accuracy of the SPC model increases the detection accuracy by 20% compared to the existing machine learning algorithms while keeping a high attack detection rate.
引用
收藏
页码:837 / 842
页数:6
相关论文
共 50 条
  • [1] Cloud-Based Intrusion Detection Approach Using Machine Learning Techniques
    Attou, Hanaa
    Guezzaz, Azidine
    Benkirane, Said
    Azrour, Mourade
    Farhaoui, Yousef
    BIG DATA MINING AND ANALYTICS, 2023, 6 (03) : 311 - 320
  • [2] Hybrid Intrusion Detection System Using Machine Learning Techniques in Cloud Computing Environments
    Aljamal, Ibraheem
    Tekeoglu, Ali
    Bekiroglu, Korkut
    Sengupta, Saumendra
    2019 IEEE/ACIS 17TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING RESEARCH, MANAGEMENT AND APPLICATIONS (SERA), 2019, : 84 - 89
  • [3] Intrusion Detection Using Machine Learning and Deep Learning Techniques
    Calisir, Sinan
    Atay, Remzi
    Pehlivanoglu, Meltem Kurt
    Duru, Nevcihan
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 656 - 660
  • [4] Performance Analysis of Machine Learning Techniques in Intrusion Detection
    Tungjaturasopon, Praiya
    Piromsopa, Krerk
    PROCEEDINGS OF 2018 VII INTERNATIONAL CONFERENCE ON NETWORK, COMMUNICATION AND COMPUTING (ICNCC 2018), 2018, : 6 - 10
  • [5] Evaluation of Machine Learning Techniques for Network Intrusion Detection
    Zaman, Marzia
    Lung, Chung-Horng
    NOMS 2018 - 2018 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, 2018,
  • [6] Machine learning techniques for web intrusion detection - a comparison
    Truong Son Pham
    Tuan Hao Hoang
    Van Canh Vu
    2016 EIGHTH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE), 2016, : 291 - 297
  • [7] Machine Learning Techniques for Intrusion Detection: A Comparative Analysis
    Hamid, Yasir
    Sugumaran, M.
    Journaux, Ludovic
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATICS AND ANALYTICS (ICIA' 16), 2016,
  • [8] Machine Learning Techniques for Intrusion Detection on Public Dataset
    Thanthrige, Udaya Sampath K. Perera Miriya
    Samarabandu, Jagath
    Wang, Xianbin
    2016 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2016,
  • [9] Network Intrusion Detection Using Machine Learning Techniques
    Almutairi, Yasmeen
    Alhazmi, Bader
    Munshi, Amr
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2022, 16 (03) : 193 - 206
  • [10] Performance Analysis Of Machine Learning Techniques In Intrusion Detection
    Kaya, Cetin
    Yildiz, Oktay
    Ay, Sinan
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 1473 - 1476