Pseudo-inverses of difference matrices and their application to sparse signal approximation

被引:5
|
作者
Plonka, Gerlind [1 ]
Hoffmann, Sebastian [2 ]
Weickert, Joachim [2 ]
机构
[1] Univ Gottingen, Inst Numer & Appl Math, Lotzestr 16-18, D-37083 Gottingen, Germany
[2] Univ Saarland, Math Image Anal Grp, Fac Math & Comp Sci, Campus B1-7, D-66041 Saarbrucken, Germany
关键词
Moore-Penrose inverse; Fourier transform; Linear diffusion; Orthogonal matching pursuit; Partial differential equations; Interpolation; LEAST-SQUARES APPROXIMATION; SPLINES; CIRCULANT;
D O I
10.1016/j.laa.2016.03.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive new explicit expressions for the components of Moore-Penrose inverses of symmetric difference matrices. These generalized inverses are applied in a new regularization approach for scattered data interpolation based on partial differential equations. The columns of the Moore-Penrose inverse then serve as elements of a dictionary that allow a sparse signal approximation. In order to find a set of suitable data points for signal representation we apply the orthogonal matching pursuit (OMP) method. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:26 / 47
页数:22
相关论文
共 50 条