Lifespan of Classical Solutions to Semilinear Neumann-Wave Equations

被引:0
|
作者
Zha, Dongbing [1 ]
Wang, Fanshun [2 ]
机构
[1] Donghua Univ, Dept Math & Inst Nonlinear Sci, Shanghai 201620, Peoples R China
[2] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Lifespan; Semilinear Neumann-wave equations; LONG-TIME EXISTENCE; STAR-SHAPED OBSTACLE; GLOBAL EXISTENCE; STRAUSS-CONJECTURE; NULL CONDITION; EXTERIOR; DECAY; BOUNDARY; SMITH; KEEL;
D O I
10.1007/s10884-021-10077-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the initial-boundary value problems of quadratic semilinear wave equations outside of nontrapping obstacles with Neumann boundary conditions in spatial dimensions n >= 3. We obtain some lower bounds of the lifespan of classical solutions, which coincide with the sharp results for the corresponding Cauchy problems. Particularly, our results generalize the works of Shibata and Tsutsumi (North-Holland Mathematics Studies, vol 128, pp 175-228, 1985) in n >= 6, of Hayashi (J. Funct. Anal. 131:302-344, 1995) in n = 4, 5, and of Godin (Comm Partial Differ Equ 14:299-374, 1989) in n = 3.
引用
收藏
页码:2329 / 2346
页数:18
相关论文
共 50 条