Advanced 3D Visualization of Android Malware Families

被引:1
|
作者
Basurto, Nuno [1 ]
Quintian, Hector [2 ]
Urda, Daniel [1 ]
Calvo-Rolle, Jose Luis [2 ]
Herrero, Alvaro [1 ]
Corchado, Emilio [3 ]
机构
[1] Univ Burgos, Dept Ingn Informat, Escuela Politecn Super, Grp Inteligencia Computac Aplicada GICAP, Av Cantabria S-N, Burgos 09006, Spain
[2] Univ A Coruna, Dept Ind Engn, CTC, CITIC, Avda 19 Febrero S-N, Ferrol 15405, A Coruna, Spain
[3] Univ Salamanca, Dept Informat & Automat, Plaza Merced S-N, Salamanca 37008, Spain
关键词
Android malware; Malware families; Exploratory projection pursuit; Clustering; 3D visualization; NETWORK TRAFFIC DATA; NEURAL VISUALIZATION; INTRUSION;
D O I
10.1007/978-3-030-87872-6_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The number of attacks aimed at compromising smartphones in general, and Android devices in particular, is acknowledged as one of the main security concerns of these devices. Accordingly, a great effort has been devoted in recent years to deal with such incidents. However, scant attention has been paid to study the application of different visualization techniques for the analysis of malware. To bridge this gap, the present paper proposes the application of a novel technique called Hybrid Unsupervised Exploratory Plots (HUEPs) for the visualization of an Androidmalware dataset. Thanks to the advanced 3Dvisualization that is obtained, the proposed solution provides with an overview of the structure of the malware families, supporting the analysis of their internal organization. Experimentation has been carried out with the popular Android Malware Genome (Malgenome) dataset, obtaining promising results.
引用
收藏
页码:167 / 177
页数:11
相关论文
共 50 条
  • [1] Neural Visualization of Android Malware Families
    Gonzalez, Alejandro
    Herrero, Alvaro
    Corchado, Emilio
    INTERNATIONAL JOINT CONFERENCE SOCO'16- CISIS'16-ICEUTE'16, 2017, 527 : 574 - 583
  • [2] Fingerprinting Android malware families
    Nannan Xie
    Xing Wang
    Wei Wang
    Jiqiang Liu
    Frontiers of Computer Science, 2019, 13 : 637 - 646
  • [3] Fingerprinting Android malware families
    Xie, Nannan
    Wang, Xing
    Wang, Wei
    Liu, Jiqiang
    FRONTIERS OF COMPUTER SCIENCE, 2019, 13 (03) : 637 - 646
  • [4] Detection and Visualization of Android Malware Behavior
    Somarriba, Oscar
    Zurutuza, Urko
    Uribeetxeberria, Roberto
    Delosieres, Laurent
    Nadjm-Tehrani, Simin
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2016, 2016
  • [5] Advanced Urban 3D Modelling and Visualization
    Maltezos, Evangelos
    Ioannidis, Charalabos
    Doulamis, Anastasios
    Karantzalos, Konstantinos
    Doulamis, Nlkolaos
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2020, 34 (04): : 43 - 45
  • [6] Clustering Android Malware Families by Http Traffic
    Aresu, Marco
    Ariu, Davide
    Ahmadi, Mansour
    Maiorca, Davide
    Giacinto, Giorgio
    2015 10TH INTERNATIONAL CONFERENCE ON MALICIOUS AND UNWANTED SOFTWARE (MALWARE), 2015, : 128 - 135
  • [7] Key features for the characterization of Android malware families
    Sedano, Javier
    Gonzalez, Silvia
    Chira, Camelia
    Herrero, Alvaro
    Corchado, Emilio
    Ramon Villar, Jose
    LOGIC JOURNAL OF THE IGPL, 2017, 25 (01) : 54 - 66
  • [8] Using AI to Detect Android Malware Families
    Alrabaee, Saed
    Al-kfairy, Mousa
    Taha, Mohammad Bany
    Alfandi, Omar
    Taher, Fatma
    El Fiky, Ahmed Hashem
    20TH INTERNATIONAL CONFERENCE ON THE DESIGN OF RELIABLE COMMUNICATION NETWORKS, DRCN 2024, 2024,
  • [9] Advanced Engineering Visualization with Standardized 3D Formats
    Emmer, Christian
    Froehlich, Arnulf
    Stjepandic, Josip
    PRODUCT LIFECYCLE MANAGEMENT FOR SOCIETY (PLM 2013), 2013, 409 : 584 - 595
  • [10] Advanced Engineering Visualization with Standardized 3D Formats
    Emmer, Christian
    Froehlich, Arnulf
    Stjepandic, Josip
    DIGITAL PRODUCT AND PROCESS DEVELOPMENT SYSTEMS, 2013, 411 : 286 - 295