Optimal Portfolio with a Defaultable Bond

被引:0
|
作者
Bian Shibo [1 ]
Zhang Xiaoyang [1 ]
机构
[1] Shanghai Lixin Univ Commerce, Risk Management Res Inst, Shanghai, Peoples R China
关键词
defaultable bond; jump risk; reduced-form model; optimal portfolio; martingale method; RISK;
D O I
暂无
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper we research a representative investor how to optimally allocate her wealth among the following securities; a defaultable bond, a stock and a bank account.. We model the defaultable bond price through a reduced-form approach and solve the dynamics of its price. Using martingale methods, we obtain a dosed-form solution to this optimal problem. From the solution it is dear that for a jump-risk premium greater than one, namely the market pricing the jump risk in the defaultable bond, the investor will optimally invest a positive amount, in the defaultable bond. On the other hand, the investor will optimally invest nothing in the defaultable bond.
引用
收藏
页码:8 / 15
页数:8
相关论文
共 50 条
  • [1] AN OPTIMAL PORTFOLIO PROBLEM IN A DEFAULTABLE MARKET
    Bo, Lijun
    Wang, Yongjin
    Yang, Xuewei
    ADVANCES IN APPLIED PROBABILITY, 2010, 42 (03) : 689 - 705
  • [2] Optimal investment in a defaultable bond
    Lakner, Peter
    Liang, Weijian
    MATHEMATICS AND FINANCIAL ECONOMICS, 2008, 1 (3-4) : 283 - 310
  • [3] Optimal investment in a defaultable bond
    Peter Lakner
    Weijian Liang
    Mathematics and Financial Economics, 2008, 1 : 283 - 310
  • [4] Optimal investment strategies for defaultable bond
    Risk Management Research Institute, Shanghai Lixin University of Commerce, Shanghai 201620, China
    不详
    不详
    Xitong Gongcheng Lilum yu Shijian, 12 (2611-2618):
  • [5] Optimal portfolio with defaultable bonds under default correlation
    Bian, S.-B. (bsb@lixin.edu.cn), 1600, Systems Engineering Society of China (33):
  • [6] Portfolio optimization with a defaultable security
    Bielecki, Tomasz
    Jang, Inwon
    ASIA-PACIFIC FINANCIAL MARKETS, 2006, 13 (02) : 113 - 127
  • [7] Optimal portfolio choice in the bond market
    Nathanael Ringer
    Michael Tehranchi
    Finance and Stochastics, 2006, 10 : 553 - 573
  • [8] Optimal portfolio choice in the bond market
    Ringer, Nathanael
    Tehranchi, Michael
    FINANCE AND STOCHASTICS, 2006, 10 (04) : 553 - 573
  • [9] Defaultable Bond Markets with Jumps
    Xiong, Dewen
    Kohlmann, Michael
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2012, 30 (02) : 285 - 321
  • [10] PRICING OF MULTIPLE DEFAULTABLE BOND
    Jian Zhihong Li ChulinDept.of Math.
    AppliedMathematics:AJournalofChineseUniversities, 2002, (03) : 335 - 343