Genome Rearrangements Can Make and Break Small RNA Genes

被引:19
|
作者
Raghavan, Rahul [1 ,2 ]
Kacharia, Fenil R. [1 ,2 ]
Millar, Jess A. [1 ,2 ]
Sislak, Christine D. [1 ,2 ]
Ochman, Howard [3 ]
机构
[1] Portland State Univ, Dept Biol, Portland, OR 97207 USA
[2] Portland State Univ, Ctr Life Extreme Environm, Portland, OR 97207 USA
[3] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA
来源
GENOME BIOLOGY AND EVOLUTION | 2015年 / 7卷 / 02期
关键词
sRNA; E; coli; Salmonella; intergenic regions; gene origination; TRANSCRIPTION START SITES; ESCHERICHIA-COLI; WIDE IDENTIFICATION; BIOFILM FORMATION; EVOLUTION; EXPRESSION; VIRULENCE; SEQUENCE; HFQ; METABOLISM;
D O I
10.1093/gbe/evv009
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Small RNAs (sRNAs) are short, transcribed regulatory elements that are typically encoded in the intergenic regions (IGRs) of bacterial genomes. Several sRNAs, first recognized in Escherichia coli, are conserved among enteric bacteria, but because of the regulatory roles of sRNAs, differences in sRNA repertoires might be responsible for features that differentiate closely related species. We scanned the E. coli MG1655 and Salmonella enterica Typhimurium genomes for nonsyntenic IGRs as a potential source of uncharacterized, species-specific sRNAs and found that genome rearrangements have reconfigured several IGRs causing the disruption and formation of sRNAs. Within an IGR that is present in E. coli but was disrupted in Salmonella by a translocation event is an sRNA that is associated with the FNR/CRP global regulators and influences E. coli biofilm formation. A Salmonella-specific sRNA evolved de novo through point mutations that generated a sigma(70) promoter sequence in an IGR that arose through genome rearrangement events. The differences in the sRNA pools among bacterial species have previously been ascribed to duplication, deletion, or horizontal acquisition. Here, we show that genomic rearrangements also contribute to this process by either disrupting sRNA-containing IGRs or creating IGRs in which novel sRNAs may evolve.
引用
收藏
页码:557 / 566
页数:10
相关论文
共 50 条