Eccentricity-dependent temporal contrast tuning in human visual cortex measured with fMRI

被引:18
|
作者
Himmelberg, Marc M. [1 ]
Wade, Alex R. [1 ,2 ]
机构
[1] Univ York, Dept Psychol, York YO10 5DD, N Yorkshire, England
[2] York NeuroImaging Ctr, Bioctr, York Sci Pk, York YO10 5NY, N Yorkshire, England
基金
欧盟地平线“2020”; 英国生物技术与生命科学研究理事会;
关键词
Visual cortex; Temporal contrast sensitivity; Magnocellular pathway; Eccentricity; fMRI; Population receptive fields; LATERAL GENICULATE-NUCLEUS; GANGLION-CELLS; SPATIOTEMPORAL FREQUENCY; FUNCTIONAL ARCHITECTURE; STRIATE CORTEX; HUMAN BRAIN; FIELD; SENSITIVITY; MONKEY; FLICKER;
D O I
10.1016/j.neuroimage.2018.09.049
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cells in the peripheral retina tend to have higher contrast sensitivity and respond at higher flicker frequencies than those closer to the fovea. Although this predicts increased behavioural temporal contrast sensitivity in the peripheral visual field, this effect is rarely observed in psychophysical experiments. It is unknown how temporal contrast sensitivity is represented across eccentricity within cortical visual field maps and whether such sensitivities reflect the response properties of retinal cells or psychophysical sensitivities. Here, we used functional magnetic resonance imaging (fMRI) to measure contrast sensitivity profiles at four temporal frequencies in five retinotopically-defined visual areas. We also measured population receptive field (pRF) parameters (polar angle, eccentricity, and size) in the same areas. Overall contrast sensitivity, independent of pRF parameters, peaked at 10 Hz in all visual areas. In V1, V2, V3, and V3a, peripherally-tuned voxels had higher contrast sensitivity at a high temporal frequency (20 Hz), while hV4 more closely reflected behavioural sensitivity profiles. We conclude that our data reflect a cortical representation of the increased peripheral temporal contrast sensitivity that is already present in the retina and that this bias must be compensated later in the cortical visual pathway.
引用
收藏
页码:462 / 474
页数:13
相关论文
共 50 条
  • [1] Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner
    Bressler, David W.
    Fortenbaugh, Francesca C.
    Robertson, Lynn C.
    Silver, Michael A.
    VISION RESEARCH, 2013, 85 : 104 - 112
  • [2] ECCENTRICITY-DEPENDENT RESIDUAL TARGET DETECTION IN VISUAL-FIELD DEFECTS
    STOERIG, P
    POPPEL, E
    EXPERIMENTAL BRAIN RESEARCH, 1986, 64 (03) : 469 - 475
  • [3] Speed tuning in human visual cortex: An fMRI adaptation study
    Ashida, H.
    Lingnau, A.
    Wall, M.
    Smith, A. T.
    PERCEPTION, 2007, 36 : 110 - 110
  • [4] fMRI of contrast response in visual cortex
    Cornelissen, F. W.
    Pelli, D. G.
    Farell, B.
    Szeverenyi, N.
    PERCEPTION, 1995, 24 : 89 - 89
  • [5] Multivoxel fMRI analysis of color tuning in human primary visual cortex
    Parkes, Laura M.
    Marsman, Jan-Bernard C.
    Oxley, David C.
    Goulermas, John Y.
    Wuerger, Sophie M.
    JOURNAL OF VISION, 2009, 9 (01):
  • [6] Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex
    Alitto, HJ
    Usrey, WM
    JOURNAL OF NEUROPHYSIOLOGY, 2004, 91 (06) : 2797 - 2808
  • [7] FMRI OF CONTRAST RESPONSE IN VISUAL-CORTEX
    CORNELISSEN, FW
    PELLI, DG
    FARELL, B
    SZEVERENYI, N
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1995, 36 (04) : S17 - S17
  • [8] Adaptation to colored backgrounds measured in human visual cortex using fMRI.
    Wade, A
    Wandell, B
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2000, 41 (04) : S526 - S526
  • [9] Color, motion and contrast-response functions measured in human cortex using fMRI
    Wandell, B
    Baseler, H
    Engel, S
    Poirson, A
    Zhang, X
    Boynton, G
    Demb, J
    Teo, P
    Heeger, D
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1997, 38 (04) : 2274 - 2274
  • [10] Delayed effects of attention in visual cortex as measured with fMRI
    Bouvier, Seth E.
    Engel, Stephen A.
    NEUROIMAGE, 2011, 57 (03) : 1177 - 1183