A quadratic spline collocation method for the Dirichlet biharmonic problem

被引:9
|
作者
Bialecki, Bernard [1 ]
Fairweather, Graeme [2 ]
Karageorghis, Andreas [3 ]
Maack, Jonathan [4 ,5 ]
机构
[1] Colorado Sch Mines, Dept Appl Math & Stat, Golden, CO 80401 USA
[2] Amer Math Soc, Math Reviews, 416 Fourth St, Ann Arbor, MI 48103 USA
[3] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
[4] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[5] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA
关键词
Biharmonic equation; Quadratic spline collocation; Matrix decomposition algorithms; Fast Fourier transforms; Optimal global convergence rates; Superconvergence; EQUATION; SOLVER;
D O I
10.1007/s11075-019-00676-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new method based on quadratic spline collocation is formulated for the solution of the Dirichlet biharmonic problem on the unit square rewritten as a coupled system of two second-order partial differential equations. This method involves the solution of an auxiliary biharmonic problem using fast Fourier transforms and the solution of a nonsymmetric Schur complement system using preconditioned BICGSTAB, at a total cost of N2logN on an N x N uniform partition of the unit square. The results of numerical experiments demonstrate the optimality of the global accuracy of the method and also superconvergence results, in particular, third-order accuracy in the L infinity norm of the solution and its fourth-order accuracy at the partition nodes and the collocation points.
引用
收藏
页码:165 / 199
页数:35
相关论文
共 50 条
  • [1] A quadratic spline collocation method for the Dirichlet biharmonic problem
    Bernard Bialecki
    Graeme Fairweather
    Andreas Karageorghis
    Jonathan Maack
    Numerical Algorithms, 2020, 83 : 165 - 199
  • [2] An optimal two-step quadratic spline collocation method for the Dirichlet biharmonic problem
    Bernard Bialecki
    Graeme Fairweather
    Andreas Karageorghis
    Numerical Algorithms, 2022, 91 : 1115 - 1143
  • [3] An optimal two-step quadratic spline collocation method for the Dirichlet biharmonic problem
    Bialecki, Bernard
    Fairweather, Graeme
    Karageorghis, Andreas
    NUMERICAL ALGORITHMS, 2022, 91 (03) : 1115 - 1143
  • [4] A legendre spectral collocation method for the biharmonic Dirichlet problem
    Bialecki, B
    Karageorghis, A
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (03): : 637 - 662
  • [5] A fast solver for the orthogonal spline collocation solution of the biharmonic Dirichlet problem on rectangles
    Bialecki, B
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 191 (02) : 601 - 621
  • [6] Quadratic spline collocation method for weakly singular integral equations and corresponding eigenvalue problem
    Pallav, R.
    Pedas, A.
    Mathematical Modelling and Analysis, 2002, 7 (02) : 285 - 296
  • [7] Orthogonal spline collocation methods for biharmonic problems
    Lou, ZM
    Bialecki, B
    Fairweather, G
    NUMERISCHE MATHEMATIK, 1998, 80 (02) : 267 - 303
  • [8] Orthogonal spline collocation methods for biharmonic problems
    Zhou-Ming Lou
    Bernard Bialecki
    Graeme Fairweather
    Numerische Mathematik, 1998, 80 : 267 - 303
  • [9] Spline approximation methods for the biharmonic Dirichlet problem on non-smooth domains
    Didenko, VD
    Silbermann, B
    TOEPLITZ MATRICES AND SINGULAR INTEGRAL EQUATIONS: THE BERND SILBERMANN ANNIVERSARY VOL, 2002, 135 : 145 - 160
  • [10] Quadratic spline collocation method for the time fractional subdiffusion equation
    Luo, Wei-Hua
    Huang, Ting-Zhu
    Wu, Guo-Cheng
    Gu, Xian-Ming
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 : 252 - 265