Rings in which Nilpotent Elements are Right Singular

被引:1
|
作者
Nejadzadeh, A. [1 ]
Amini, A. [1 ]
Amini, B. [1 ]
Sharif, Habib [1 ]
机构
[1] Shiraz Univ, Dept Math, Coll Sci, Shiraz 71457, Iran
关键词
Nilpotent element; Right singular element; Right singular ideal; Right Z-reduced ring; ARMENDARIZ RINGS;
D O I
10.1007/s41980-018-0085-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that every central nilpotent element of a ring R belongs to the right (left) singular ideal of R. In this paper, we investigate rings in which all nilpotent elements belong to the right singular ideal of R.
引用
收藏
页码:1217 / 1226
页数:10
相关论文
共 50 条
  • [1] Rings in which Nilpotent Elements are Right Singular
    A. Nejadzadeh
    A. Amini
    B. Amini
    Habib Sharif
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 1217 - 1226
  • [2] Rings in Which Nilpotent Elements Belong to Socle
    Ali Mohammad Karparvar
    Babak Amini
    Afshin Amini
    Habib Sharif
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1889 - 1892
  • [3] Rings in Which Nilpotent Elements Belong to Socle
    Karparvar, Ali Mohammad
    Amini, Babak
    Amini, Afshin
    Sharif, Habib
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A4): : 1889 - 1892
  • [4] Rings in which elements are the sum of a nilpotent and a root of a fixed polynomial that commute
    Handam, Ali H.
    Khashan, Hani A.
    OPEN MATHEMATICS, 2017, 15 : 420 - 426
  • [5] Nilpotent elements and reduced rings
    Wei, Junchao
    Li, Libin
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (02) : 341 - 353
  • [6] NILPOTENT ELEMENTS AND MCCOY RINGS
    Zhao, Liang
    Zhu, Xiaosheng
    Gu, Qinqin
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2012, 49 (03) : 326 - 337
  • [7] Nilpotent elements and Armendariz rings
    Antoine, Ramon
    JOURNAL OF ALGEBRA, 2008, 319 (08) : 3128 - 3140
  • [8] NILPOTENT ELEMENTS IN REPRESENTATION RINGS
    ZEMANEK, JR
    JOURNAL OF ALGEBRA, 1971, 19 (04) : 453 - &
  • [9] NILPOTENT ELEMENTS IN GROUP RINGS
    SEHGAL, SK
    SEHGAL, K
    MANUSCRIPTA MATHEMATICA, 1975, 15 (01) : 65 - 80
  • [10] ON NILPOTENT ELEMENTS OF DISTRIBUTIVE RINGS
    MAZUREK, R
    PUCZYLOWSKI, ER
    COMMUNICATIONS IN ALGEBRA, 1990, 18 (02) : 463 - 471