Collective canard explosions of globally-coupled rotators with adaptive coupling

被引:9
|
作者
Ciszak, Marzena [1 ]
Olmi, Simona [2 ]
Innocenti, Giacomo [4 ]
Torcini, Alessandro [2 ,5 ]
Marino, Francesco [1 ,3 ]
机构
[1] CNR, Ist Nazl Ott, Via Sansone 1, I-50019 Sesto Fiorentino, FI, Italy
[2] CNR, Ist Sistemi Complessi, Via Madonna Piano 10, I-50019 Sesto Fiorentino, Italy
[3] Ist Nazl Fis Nucl, Sez Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, FI, Italy
[4] Univ Florence, Dept Informat Engn, Via Santa Marta 3, I-50139 Florence, Italy
[5] Univ Cergy Pontoise, CNRS, UMR 8089, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France
关键词
MIXED-MODE OSCILLATIONS; SYNCHRONIZATION; EXCITABILITY; BEHAVIOR; KURAMOTO; SYSTEMS;
D O I
10.1016/j.chaos.2021.111592
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Canards, special trajectories that follow invariant repelling slow manifolds for long time intervals, have been frequently observed in slow-fast systems of either biological, chemical and physical nature. Here, collective canard explosions are demonstrated in a population of globally-coupled phase-rotators subject to adaptive coupling. In particular, we consider a bimodal Kuramoto model displaying coexistence of asynchronous and partially synchronized dynamics subject to a linear global feedback. A detailed geometric singular perturbation analysis of the associated mean-field model allows us to explain the emergence of collective canards in terms of the stability properties of the one-dimensional critical manifold, near which the slow macroscopic dynamics takes place. We finally show how collective canards and related manifolds gradually emerge in the globally-coupled system for increasing system sizes, in spite of the trivial dynamics of the uncoupled rotators. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Collective canard explosions of globally-coupled rotators with adaptive coupling
    Ciszak, Marzena
    Olmi, Simona
    Innocenti, Giacomo
    Torcini, Alessandro
    Marino, Francesco
    Marino, Francesco (francesco.marino@ino.it), 1600, Elsevier Ltd (153):
  • [2] Matryoshka Globally-Coupled LDPC Code
    Liu, Hao
    Yu, Qiyue
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (06) : 3191 - 3206
  • [3] Blinking chimeras in globally coupled rotators
    Goldschmidt, Richard Janis
    Pikoysky, Arkady
    Politi, Antonio
    CHAOS, 2019, 29 (07)
  • [4] Tail-Biting Globally-Coupled LDPC Codes
    Zhang, Ji
    Bai, Baoming
    Li, Shuangyang
    Zhu, Min
    Li, Huaan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (12) : 8206 - 8219
  • [5] Dynamics of globally coupled rotators with multiplicative noise
    Kim, S
    Park, SH
    Ryu, CS
    Han, SK
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (05): : 915 - 919
  • [6] AMPLITUDE EXPANSIONS FOR INSTABILITIES IN POPULATIONS OF GLOBALLY-COUPLED OSCILLATORS
    CRAWFORD, JD
    JOURNAL OF STATISTICAL PHYSICS, 1994, 74 (5-6) : 1047 - 1084
  • [7] Stability of splay states in globally coupled rotators
    Calamai, Massimo
    Politi, Antonio
    Torcini, Alessandro
    PHYSICAL REVIEW E, 2009, 80 (03):
  • [8] Entropy-complexity analysis in some globally-coupled systems
    Chrisment, Antoine M.
    Firpo, Marie-Christine
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 460 : 162 - 173
  • [9] A new approach to partial synchronization in globally coupled rotators
    Mohanty, P. K.
    Politi, Antonio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (26): : L415 - L421
  • [10] A canard mechanism for localization in systems of globally coupled oscillators
    Rotstein, HG
    Kopell, N
    Zhabotinsky, AM
    Epstein, IR
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (06) : 1998 - 2019