An Evaluation of Land Use Land Cover (LULC) Classification for Urban Applications with Quickbird and WorldView2 Data

被引:0
|
作者
Cavur, Mahmut [1 ]
Nabdel, Leili [1 ]
Kemec, Serkan [2 ]
Duzgun, H. Sebnem [3 ]
机构
[1] Middle East Tech Univ, Geodet & Geog Informat Technol, Ankara, Turkey
[2] Yuzuncu Yil Univ, Dept City & Reg Planning, Van, Turkey
[3] Middle East Tech Univ, Min Engn Dept, Geodet & Geog Informat Technol, Ankara, Turkey
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Monitoring and analysis of the land and rapid environmental change, leads to the use of Land Use and Land Cover (LULC) classification approaches from remote sensing data. The main focus of this aper is to illustrate the practical approach to analysis and mapping of land use and land cover features using high resolution satellite images. The study is carried out for two different places, Basel and Tel Aviv. For this purpose, Quickbird satellite imagery is used for Basel and WorldView2 imagery for Tel Aviv. The classification method chosen for the Quickbird image is Support Vector Machine (SVM) classifier and Maximum Likelihood method for the WordView2 satellite imagery. Both of the methods are applied using ENVI 5.0 Remote Sensing software. An accuracy assessment is also applied to the classified results based on the ground truth points or known reference pixels.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Data Mining and model adaptation for the land use and land cover classification of a Worldview 2 image
    Nascimento, L. C.
    Cruz, C. B. M.
    Souza, E. M. F. R.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XIX, 2013, 8892
  • [2] Synergistic Use of WorldView-2 Imagery and Airborne LiDAR Data for Urban Land Cover Classification
    Wu, M. F.
    Sun, Z. C.
    Yang, B.
    Yu, S. S.
    INTERNATIONAL SYMPOSIUM ON EARTH OBSERVATION FOR ONE BELT AND ONE ROAD (EOBAR), 2017, 57
  • [3] Land use/land cover (LULC) classification using hyperspectral images: a review
    Lou, Chen
    Al-qaness, Mohammed A. A.
    AL-Alimi, Dalal
    Dahou, Abdelghani
    Abd Elaziz, Mohamed
    Abualigah, Laith
    Ewees, Ahmed A.
    GEO-SPATIAL INFORMATION SCIENCE, 2024,
  • [4] Land use/land cover (LULC) classification with MODIS time series data and validation in the Amur River Basin
    Song K.
    Wang Z.
    Liu Q.
    Liu D.
    Ermoshin V.V.
    Ganzei S.S.
    Zhang B.
    Ren C.
    Zeng L.
    Du J.
    Geography and Natural Resources, 2011, 32 (1) : 9 - 15
  • [5] Evaluation of urban green land using QuickBird data
    Li, Shu-Wei
    Feng, Zhong-Ke
    Gong, Wei-Ping
    Wang, Bo
    Beijing Linye Daxue Xuebao/Journal of Beijing Forestry University, 2008, 30 (SUPPL. 1): : 68 - 72
  • [6] HYPERSPECTRAL DATA FOR LAND USE/LAND COVER CLASSIFICATION
    Vijayan, Divya V.
    Shankar, G. Ravi
    Shankar, T. Ravi
    ISPRS TECHNICAL COMMISSION VIII SYMPOSIUM, 2014, 40-8 : 991 - 995
  • [7] FUSION OF LIDAR, HYPERSPECTRAL AND RGB DATA FOR URBAN LAND USE AND LAND COVER CLASSIFICATION
    Sukhanov, Sergey
    Budylskii, Dmitrii
    Tankoyeu, Ivan
    Heremans, Roel
    Debes, Christian
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3864 - 3867
  • [8] EFFECTS OF VARIOUS LAND USE LAND COVER (LULC) DATA ON HYDROLOGICAL MODEL PERFORMANCES
    Peker, Ismail Bilal
    Cuceloglu, Gokhan
    Gulbaz, Sezar
    Serengil, Yusuf
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2024, 23 (06):
  • [9] Land use/land cover (LULC) classification using deep-LSTM for hyperspectral images
    Tejasree, Ganji
    Agilandeeswari, L.
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2024, 27 (01): : 52 - 68
  • [10] Land use/land cover (LULC) classification using deep-LSTM for hyperspectral images
    Tejasree, Ganji
    Agilandeeswari, L.
    Egyptian Journal of Remote Sensing and Space Science, 2024, 27 (01): : 52 - 68