Chemical vapor deposition growth of bilayer graphene in between molybdenum disulfide sheets

被引:9
|
作者
Kwiecinski, Wojciech [1 ,2 ]
Sotthewes, Kai [1 ]
Poelsema, Bene [1 ]
Zandvliet, Harold J. W. [1 ]
Bampoulis, Pantelis [1 ,3 ,4 ]
机构
[1] Univ Twente, Phys Interfaces & Nanomat, MESA Inst Nanotechnol, POB 217, NL-7500 AE Enschede, Netherlands
[2] Lodz Univ Technol, Fac Chem, Zeromskiego 116, PL-90924 Lodz, Poland
[3] Univ Twente, Phys Fluids, MESA Inst Nanotechnol, POB 217, NL-7500 AE Enschede, Netherlands
[4] Univ Twente, JM Burgers Ctr Fluid Mech, MESA Inst Nanotechnol, POB 217, NL-7500 AE Enschede, Netherlands
关键词
MoS2; Graphene; 2D materials; Chemical vapor deposition; Heterostructures; SCANNING-TUNNELING-MICROSCOPY; SPECTROSCOPY; EDGE; HETEROSTRUCTURES; NUCLEATION; LAYERS; SITES;
D O I
10.1016/j.jcis.2017.06.076
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Direct growth of flat micrometer-sized bilayer graphene islands in between molybdenum disulfide sheets is achieved by chemical vapor deposition of ethylene at about 800 degrees C. The temperature assisted decomposition of ethylene takes place mainly at molybdenum disulfide step edges. The carbon atoms intercalate at this high temperature, and during the deposition process, through defects of the molybdenum disulfide surface such as steps and wrinkles. Post growth atomic force microscopy images reveal that circular flat graphene islands have grown at a high yield. They consist of two graphene layers stacked on top of each other with a total thickness of 0.74 nm. Our results demonstrate direct, simple and high yield growth of graphene/molybdenum disulfide heterostructures, which can be of high importance in future nanoelectronic and optoelectronic applications. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:776 / 782
页数:7
相关论文
共 50 条
  • [1] Growth of curved graphene sheets on graphite by chemical vapor deposition
    Kholmanov, I.
    Cavaliere, E.
    Fanetti, M.
    Cepek, C.
    Gavioli, L.
    PHYSICAL REVIEW B, 2009, 79 (23)
  • [2] Chemical vapor deposition growth of molybdenum disulfide for photoelectrochemical hydrogen generation
    Rosman, Nurul Nabila
    Yunus, Rozan Mohamad
    Minggu, Lorna Jeffery
    Arifin, Khuzaimah
    Kassim, Mohammad B.
    Mohamed, Mohd Ambri
    JURNAL TRIBOLOGI, 2020, 26 : 68 - 74
  • [3] Growth from below: bilayer graphene on copper by chemical vapor deposition
    Nie, Shu
    Wu, Wei
    Xing, Shirui
    Yu, Qingkai
    Bao, Jiming
    Pei, Shin-shem
    McCarty, Kevin F.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [4] Domain Aligned Growth of Molybdenum Disulfide on Various Substrates by Chemical Vapor Deposition
    Park, Woanseo
    Kim, Hyung Joon
    Choi, Kyong Hoon
    Shim, Jae-Phil
    Kim, Tae-Young
    Kim, Jae-Keun
    Son, Hyungbin
    Kim, Kee Hoon
    Lee, Dong-Seon
    Lee, Takhee
    SCIENCE OF ADVANCED MATERIALS, 2016, 8 (08) : 1683 - 1687
  • [5] Direct growth of molybdenum disulfide on arbitrary insulating surfaces by chemical vapor deposition
    Wang, Jiao
    Chen, Linfeng
    Lu, Wenjing
    Zeng, Mengqi
    Tan, Lifang
    Ren, Feng
    Jiang, Changzhong
    Fu, Lei
    RSC ADVANCES, 2015, 5 (06) : 4364 - 4367
  • [6] Equilibrium Chemical Vapor Deposition Growth of Bernal-Stacked Bilayer Graphene
    Zhao, Pei
    Kim, Sungjin
    Chen, Xiao
    Einarsson, Erik
    Wang, Miao
    Song, Yenan
    Wang, Hongtao
    Chiashi, Shohei
    Xiang, Rong
    Maruyama, Shigeo
    ACS NANO, 2014, 8 (11) : 11631 - 11638
  • [7] Catalytic growth of large area monolayer molybdenum disulfide film by chemical vapor deposition
    Li, H.
    Zhang, X. H.
    Tang, Z. K.
    THIN SOLID FILMS, 2019, 669 : 371 - 376
  • [8] Growth of Large Transparent and Conducting Graphene Sheets Using Chemical Vapor Deposition
    Park, H. J.
    Skakalova, V.
    Meyer, J.
    Roth, S.
    von Klitzing, K.
    NANOSCALE ONE-DIMENSIONAL ELECTRONIC AND PHOTONIC DEVICES 3 (NODEPD 3), 2009, 25 (10): : 59 - 61
  • [9] Review of bilayer graphene synthesized by chemical vapor deposition
    Xue-Wei, Zhang
    Zhen-Xing, Zou
    Pei, Zhao
    Hong-Tao, Wang
    Surface Technology, 2019, 48 (06): : 1 - 19
  • [10] Graphene sheets via microwave chemical vapor deposition
    Yuan, G. D.
    Zhang, W. J.
    Yang, Y.
    Tang, Y. B.
    Li, Y. Q.
    Wang, J. X.
    Meng, X. M.
    He, Z. B.
    Wu, C. M. L.
    Bello, I.
    Lee, C. S.
    Lee, S. T.
    CHEMICAL PHYSICS LETTERS, 2009, 467 (4-6) : 361 - 364