Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors

被引:98
作者
Harms, J
Chen, YB
Chelkowski, S
Franzen, A
Vahlbruch, H
Danzmann, K
Schnabel, R
机构
[1] Univ Hannover, Inst Atom & Mol Phys, D-30167 Hannover, Germany
[2] ALbert Einstein Inst, Max Planck Inst Gravitat Phys, D-30167 Hannover, Germany
[3] CALTECH, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW D | 2003年 / 68卷 / 04期
关键词
D O I
10.1103/PhysRevD.68.042001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We theoretically analyze the quantum noise of signal-recycled laser interferometric gravitational-wave detectors with additional input and output optics, namely, frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We combine the work of Buonanno and Chen on the quantum noise of signal-recycled interferometers with ordinary input and output optics, and the work of Kimble on frequency-dependent input and output optics with conventional interferometers. Analytical formulas for the optimal input and output frequency dependencies are obtained. It is shown that injecting squeezed light with the optimal frequency-dependent squeezing angle into the dark port yields an improvement in the noise spectral density by a factor of e(-2r) (in power) over the entire squeezing bandwidth, where r is the squeezing parameter. It is further shown that a frequency-dependent (variational) homodyne readout leads to an additional increase in sensitivity which is significant in the wings of the doubly resonant structure. The optimal variational input squeezing in the case of an ordinary output homodyne detection is shown to be realizable by applying two optical filters on a frequency-independent squeezed vacuum. Throughout this paper, we take as an example the signal-recycled topology currently being completed at the GEO 600 site. However, theoretical results obtained here are also applicable to the proposed topology of the Advanced LIGO.
引用
收藏
页数:8
相关论文
共 41 条
[1]   LIGO - THE LASER-INTERFEROMETER-GRAVITATIONAL-WAVE-OBSERVATORY [J].
ABRAMOVICI, A ;
ALTHOUSE, WE ;
DREVER, RWP ;
GURSEL, Y ;
KAWAMURA, S ;
RAAB, FJ ;
SHOEMAKER, D ;
SIEVERS, L ;
SPERO, RE ;
THORNE, KS ;
VOGT, RE ;
WEISS, R ;
WHITCOMB, SE ;
ZUCKER, ME .
SCIENCE, 1992, 256 (5055) :325-333
[2]   Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy [J].
Ando, M ;
Arai, K ;
Takahashi, R ;
Heinzel, G ;
Kawamura, S ;
Tatsumi, D ;
Kanda, N ;
Tagoshi, H ;
Araya, A ;
Asada, H ;
Aso, Y ;
Barton, MA ;
Fujimoto, MK ;
Fukushima, M ;
Futamase, T ;
Hayama, K ;
Horikoshi, G ;
Ishizuka, H ;
Kamikubota, N ;
Kawabe, K ;
Kawashima, N ;
Kobayashi, Y ;
Kojima, Y ;
Kondo, K ;
Kozai, Y ;
Kuroda, K ;
Matsuda, N ;
Mio, N ;
Miura, K ;
Miyakawa, O ;
Miyama, SM ;
Miyoki, S ;
Moriwaki, S ;
Musha, M ;
Nagano, S ;
Nakagawa, K ;
Nakamura, T ;
Nakao, K ;
Numata, K ;
Ogawa, Y ;
Ohashi, M ;
Ohishi, N ;
Okutomi, S ;
Oohara, K ;
Otsuka, S ;
Saito, Y ;
Sasaki, M ;
Sato, S ;
Sekiya, A ;
Shibata, M .
PHYSICAL REVIEW LETTERS, 2001, 86 (18) :3950-3954
[3]  
[Anonymous], 1993, SOVPHYS JETP
[4]  
[Anonymous], 1983, Quantum optics, Experimental gravitation, and Measurement Theory
[5]  
[Anonymous], QUANTUM OPTICS EXPT
[6]  
BRAGINSKY VB, 1967, SOV PHYS JETP-USSR, V25, P653
[7]   Noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization [J].
Braginsky, VB ;
Gorodetsky, ML ;
Khalili, FY ;
Matsko, AB ;
Thorne, KS ;
Vyatchanin, SP .
PHYSICAL REVIEW D, 2003, 67 (08)
[8]   Broadband detection of squeezed vacuum: A spectrum of quantum states [J].
Breitenbach, G ;
Illuminati, F ;
Schiller, S ;
Mlynek, J .
EUROPHYSICS LETTERS, 1998, 44 (02) :192-197
[9]   Scaling law in signal recycled laser-interferometer gravitational-wave detectors [J].
Buonanno, A ;
Chen, YB .
PHYSICAL REVIEW D, 2003, 67 (06)
[10]   Signal recycled laser-interferometer gravitational-wave detectors as optical springs [J].
Buonanno, A ;
Chen, YB .
PHYSICAL REVIEW D, 2002, 65 (04)