Locally stationary long memory estimation

被引:98
|
作者
Roueff, Francois [1 ]
von Sachs, Rainer [2 ]
机构
[1] CNRS LTCI, Telecom Paris, Inst Telecom, F-75634 Paris 13, France
[2] Catholic Univ Louvain, IMMAQ, Inst Stat Biostat & Sci Actuarielles ISBA, B-1348 Louvain, Belgium
关键词
Locally stationary process; Long memory; Semi-parametric estimation; Wavelets; PARAMETER; INFERENCE; MODELS;
D O I
10.1016/j.spa.2010.12.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
There exists a wide literature on parametrically or semi-parametrically modelling strongly dependent time series using a long-memory parameter d, including more recent work on wavelet estimation. As a generalization of these latter approaches, in this work we allow the long-memory parameter d to be varying over time. We adopt a semi-parametric approach in order to avoid fitting a time-varying parametric model, such as tvARFIMA, to the observed data. We study the asymptotic behavior of a local log-regression wavelet estimator of the time-dependent d. Both simulations and a real data example complete our work on providing a fairly general approach. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:813 / 844
页数:32
相关论文
共 50 条