A least squares-type density estimator using a polynomial function

被引:1
|
作者
Im, Jongho [1 ]
Morikawa, Kosuke [2 ]
Ha, Hyung-Tae [3 ]
机构
[1] Yonsei Univ, Dept Appl Stat, Seoul, South Korea
[2] Osaka Univ, Grad Sch Engn Sci, Osaka, Japan
[3] Gachon Univ, Dept Appl Stat, Sungnam, South Korea
基金
新加坡国家研究基金会;
关键词
Asymptotic distribution; Density estimation; Orthogonal polynomials; Series expansion; Quadratic programming;
D O I
10.1016/j.csda.2019.106882
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Higher-order density approximation and estimation methods using orthogonal series expansion have been extensively discussed in statistical literature and its various fields of application. This study proposes least squares-type estimation for series expansion via minimizing the weighted square difference of series distribution expansion and a benchmarking distribution estimator. As the least squares-type estimator has an explicit expression, similar to the classical moment-matching technique, its asymptotic properties are easily obtained under certain regularity conditions. In addition, we resolve the non-negativity issue of the series expansion using quadratic programming. Numerical examples with various simulated and real datasets demonstrate the superiority of the proposed estimator. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] On the consistency of least squares-type estimate of the diffusion process
    Ebady, A.M.N.
    Advances in Modelling and Analysis A, 1994, 20 (2-4): : 57 - 63
  • [2] Recovery Conditions of Sparse Signals Using Orthogonal Least Squares-Type Algorithms
    Lu, Liyang
    Xu, Wenbo
    Wang, Yue
    Tian, Zhi
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 4727 - 4741
  • [3] Kernel Recursive Least Squares-Type Neuron for Nonlinear Equalization
    Tehrani, Mohammed Naseri
    Shakhsi, Majid
    Khoshbin, Hossein
    2013 21ST IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2013,
  • [5] A study on the least squares estimator of multivariate isotonic regression function
    Bagchi, Pramita
    Dhar, Subhra Sankar
    SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (04) : 1192 - 1221
  • [6] ON A RESTRICTED LEAST SQUARES ESTIMATOR
    ATIQULLA.M
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1969, 64 (327) : 964 - &
  • [7] On the Least Trimmed Squares Estimator
    David M. Mount
    Nathan S. Netanyahu
    Christine D. Piatko
    Ruth Silverman
    Angela Y. Wu
    Algorithmica, 2014, 69 : 148 - 183
  • [8] On the Least Trimmed Squares Estimator
    Mount, David M.
    Netanyahu, Nathan S.
    Piatko, Christine D.
    Silverman, Ruth
    Wu, Angela Y.
    ALGORITHMICA, 2014, 69 (01) : 148 - 183
  • [9] LEAST SQUARES AS AN EXPLORATORY ESTIMATOR
    CARTER, RAL
    CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 1973, 6 (01): : 108 - 114
  • [10] USING THE LEAST-SQUARES ESTIMATOR IN TSCHEBYSCHEV ESTIMATION
    HAND, ML
    SPOSITO, VA
    COMMUNICATIONS IN STATISTICS PART B-SIMULATION AND COMPUTATION, 1980, 9 (01): : 43 - 49