On endomorphism rings of local cohomology modules

被引:22
|
作者
Hellus, M. [1 ]
Stueckrad, J. [1 ]
机构
[1] Univ Leipzig, Fak Math & Informat, D-04009 Leipzig, Germany
关键词
local cohomology; endomorphism ring; Matlis dual; complete intersection;
D O I
10.1090/S0002-9939-08-09240-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a local complete ring. For an R-module M the canonical ring map R -> End(R)(M) is in general neither injective nor surjective; we show that it is bijective for every local cohomology module M := H-I(h) (R) if H-I(l) (R) = 0 for every l not equal h (= height(I)) (I an ideal of R); furthermore the same holds for the Matlis dual of such a module. As an application we prove new criteria for an ideal to be a set-theoretic complete intersection.
引用
收藏
页码:2333 / 2341
页数:9
相关论文
共 50 条