Polyelectrolyte-single wall carbon nanotube composite as an effective cathode catalyst for air-cathode microbial fuel cells

被引:3
|
作者
Wu, Huanan [1 ,2 ]
Lu, Min [1 ]
Guo, Lin [1 ]
Bay, Leonard Guan Hong [1 ]
Zhang, Zheng [3 ]
Li, Sam Fong Yau [1 ,2 ,4 ]
机构
[1] Natl Univ Singapore, Fac Sci, Dept Chem, Singapore 117543, Singapore
[2] Natl Univ Singapore, NUS Environm Res Inst, Singapore 117411, Singapore
[3] Inst Mat Res & Engn, Singapore 117602, Singapore
[4] Peking Univ, Shenzhen Grad Sch, Sch Environm & Energy, Shenzhen Engn Lab Ecoefficient Polysilicate Mat, Shenzhen 518055, Peoples R China
基金
新加坡国家研究基金会;
关键词
cathode catalyst; microbial fuel cells; oxygen reduction reaction; polyelectrolyte; OXYGEN REDUCTION REACTION; METAL-FREE ELECTROCATALYSTS; MEDIATOR-LESS; PERFORMANCE; ELECTRICITY; GENERATION; GRAPHENE;
D O I
10.2166/wst.2014.416
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Polyelectrolyte-single wall carbon nanotube (SCNT) composites are prepared by a solution-based method and used as metal-free cathode catalysts for oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). In this study, two types of polyelectrolytes, polydiallyldimethylammonium chloride (PDDA) and poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino) propyl] urea] (PEPU) are applied to decorate the SCNTs and the resulting catalysts exhibit remarkable catalytic ability toward ORR in MFC applications. The enhanced catalytic ability could be attributed to the positively charged quaternary ammonium sites of polyelectrolytes, which increase the oxygen affinity of SCNTs and reduce activation energy in the oxygen reduction process. It is also found that PEPU-SCNT composite-based MFCs show efficient performance with maximum power density of 270.1 mW m(-2), comparable to MFCs with the benchmark Pt/C catalyst (375.3 mW m(-2)), while PDDA-SCNT composite-based MFCs produce 188.9 mW m(-2). These results indicate that PEPU-SCNT and PDDASCNT catalysts are promising candidates as metal-free cathode catalysts for ORR in MFCs and could facilitate MFC scaling up and commercialization.
引用
收藏
页码:1610 / 1616
页数:7
相关论文
共 50 条
  • [1] Characterization of Carbon Nanotube/Graphene on Carbon Cloth as an Electrode for Air-Cathode Microbial Fuel Cells
    Tsai, Hung-Yin
    Hsu, Wei-Hsuan
    Huang, Ying-Chen
    JOURNAL OF NANOMATERIALS, 2015, 2015
  • [2] Bamboo charcoal as a cost-effective catalyst for an air-cathode of microbial fuel cells
    Yang, Wei
    Li, Jun
    Ye, Dingding
    Zhu, Xun
    Liao, Qiang
    ELECTROCHIMICA ACTA, 2017, 224 : 585 - 592
  • [3] Manganese-polypyrrole-carbon nanotube, a new oxygen reduction catalyst for air-cathode microbial fuel cells
    Lu, Min
    Guo, Lin
    Kharkwal, Shailesh
    Wu, Hua'nan
    Ng, How Yong
    Li, Sam Fong Yau
    JOURNAL OF POWER SOURCES, 2013, 221 : 381 - 386
  • [4] Removable air-cathode to overcome cathode biofouling in microbial fuel cells
    Oliot, Manon
    Etcheverry, Luc
    Bergel, Alain
    BIORESOURCE TECHNOLOGY, 2016, 221 : 691 - 696
  • [5] Unlaminated carbon as separator in air-cathode single-chamber microbial fuel cells
    Zhang, Xiaoyuan
    Wang, Xin
    Cheng, Shaoan
    Huang, Xia
    Logan, Bruce
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [6] The performance of phosphorus (P)-doped activated carbon as a catalyst in air-cathode microbial fuel cells
    Chen, Zhihao
    Li, Kexun
    Pu, Liangtao
    BIORESOURCE TECHNOLOGY, 2014, 170 : 379 - 384
  • [7] Iron-nitrogen-activated carbon as cathode catalyst to improve the power generation of single-chamber air-cathode microbial fuel cells
    Pan, Yajun
    Mo, Xiaoping
    Li, Kexun
    Pu, Liangtao
    Liu, Di
    Yang, Tingting
    BIORESOURCE TECHNOLOGY, 2016, 206 : 285 - 289
  • [8] Performance Comparison of Different Cathode Strategies on Air-Cathode Microbial Fuel Cells: Coal Fly Ash as a Cathode Catalyst
    Tremouli, Asimina
    Pandis, Pavlos K.
    Kamperidis, Theofilos
    Argirusis, Christos
    Stathopoulos, Vassilis N.
    Lyberatos, Gerasimos
    WATER, 2023, 15 (05)
  • [9] Vertically aligned carbon nanotubes as anode and air-cathode in single chamber microbial fuel cells
    Amade, R.
    Moreno, H. A.
    Hussain, S.
    Vila-Costa, M.
    Bertran, E.
    APPLIED PHYSICS LETTERS, 2016, 109 (16)
  • [10] Rumen Inoculum Enhances Cathode Performance in Single-Chamber Air-Cathode Microbial Fuel Cells
    Vargas, Ignacio T.
    Tapia, Natalia
    Regan, John M.
    MATERIALS, 2022, 15 (01)