Intersecting nonhomogeneous Cantor sets with their translations

被引:3
|
作者
Zou, Yuru [2 ]
Li, Wenxia [1 ]
Yan, Caiguang [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[2] Shenzhen Univ, Coll Math & Computat Sci, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonhomogeneous Cantor sets; Intersection; Generalized Moran set; Finite type; Graph-directed set; HAUSDORFF DIMENSION;
D O I
10.1016/j.na.2011.04.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A scheme is given to compute the Hausdorff dimensions for the intersection of a class of nonhomogeneous Cantor sets with their translations. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4660 / 4670
页数:11
相关论文
共 50 条
  • [1] Intersections of Homogeneous Cantor Sets with Their Translations
    Mei Feng DAI Nonlinear Scientific Research Center
    Acta Mathematica Sinica(English Series), 2008, 24 (08) : 1313 - 1318
  • [2] Intersections of homogeneous Cantor sets with their translations
    Mei Feng Dai
    Acta Mathematica Sinica, English Series, 2008, 24 : 1313 - 1318
  • [3] Intersections of homogeneous cantor sets with their translations
    Dai, Mei Feng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (08) : 1313 - 1318
  • [4] INTERSECTING RANDOM TRANSLATES OF INVARIANT CANTOR SETS
    KENYON, R
    PERES, Y
    INVENTIONES MATHEMATICAE, 1991, 104 (03) : 601 - 629
  • [5] Self-similar structure on intersection of Cartesian product of Cantor triadic sets with their translations
    Yao, Yuanyuan
    Li, Wenxia
    MONATSHEFTE FUR MATHEMATIK, 2012, 166 (3-4): : 591 - 600
  • [6] Self-similar structure on intersection of Cartesian product of Cantor triadic sets with their translations
    Yuanyuan Yao
    Wenxia Li
    Monatshefte für Mathematik, 2012, 166 : 591 - 600
  • [7] Rational points in translations of the Cantor set
    Jiang, Kan
    Kong, Derong
    Li, Wenxia
    Wang, Zhiqiang
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2024, 35 (03): : 516 - 522
  • [8] Intersection of translations of Cantor triadic set
    Li, WX
    Xiao, DM
    ACTA MATHEMATICA SCIENTIA, 1999, 19 (02) : 214 - 219
  • [9] REGULAR CANTOR SETS
    MICHON, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 300 (19): : 673 - 675
  • [10] ON THE SHAPE OF CANTOR SETS
    COOPER, D
    PIGNATARO, T
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1988, 28 (02) : 203 - 221