Applying Anytime Heuristic Search to Cost-Optimal HTN Planning

被引:0
|
作者
Menif, Alexandre [3 ]
Guettier, Christophe [1 ]
Jacopin, Eric [2 ]
Cazenave, Tristan [3 ]
机构
[1] Safran Elect & Def, 100 Ave Paris, F-91300 Massy, France
[2] Ecoles Coetquidan, MACCLIA, CREC St Cyr, F-56381 Guer, France
[3] Univ Paris 09, LAMSADE, F-75016 Paris, France
来源
COMPUTER GAMES (CGW 2017) | 2018年 / 818卷
关键词
D O I
10.1007/978-3-319-75931-9_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a framework for cost-optimal Hierarchical Task Network (HTN) planning. The framework includes an optimal algorithm combining a branch-and-bound with a heuristic search, which can also be used as a near-optimal algorithm given a time limit. It also includes different heuristics based on weighted cost estimations and different decomposition strategies. The different elements from this framework are empirically evaluated on three planning domains, one of which is modeling a First-Person Shooter game. The empirical results establish the superiority on some domains of a decomposition strategy that prioritizes the most abstract tasks. They also highlight that the best heuristic formulation for the three domains is computed from linear combinations of optimistic and pessimistic cost estimations.
引用
收藏
页码:151 / 171
页数:21
相关论文
共 50 条
  • [1] Anytime heuristic search in temporal HTN planning for developing incident action plans
    Tang, Pan
    Wang, Hongwei
    Qi, Chao
    Wang, Jian
    AI COMMUNICATIONS, 2012, 25 (04) : 321 - 342
  • [2] An Empirical Case Study on Symmetry Handling in Cost-Optimal Planning as Heuristic Search
    Sievers, Silvan
    Wehrle, Martin
    Helmert, Malte
    Katz, Michael
    KI 2015: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2015, 9324 : 166 - 180
  • [3] Efficient symbolic search for cost-optimal planning
    Torralba, Alvaro
    Alcazar, Vidal
    Kissmann, Peter
    Edelkamp, Stefan
    ARTIFICIAL INTELLIGENCE, 2017, 242 : 52 - 79
  • [4] HTN Planning as Heuristic Progression Search
    Höller, Daniel
    Bercher, Pascal
    Behnke, Gregor
    Biundo, Susanne
    Journal of Artificial Intelligence Research, 2020, 67 : 835 - 880
  • [5] HTN Planning as Heuristic Progression Search
    Hoeller, Daniel
    Bercher, Pascal
    Behnke, Gregor
    Biundo, Susanne
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2020, 67 : 835 - 880
  • [6] Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions
    Speck, David
    Seipp, Jendrik
    Torralba, Alvaro
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2025, 82 : 1349 - 1405
  • [7] Anytime heuristic search for partial satisfaction planning
    Benton, J.
    Do, Minh
    Kambhampati, Subbarao
    ARTIFICIAL INTELLIGENCE, 2009, 173 (5-6) : 562 - 592
  • [8] Cost-Optimal Planning with Landmarks
    Karpas, Erez
    Domshlak, Carmel
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1728 - 1733
  • [9] Anytime heuristic search
    Hansen, Eric A.
    Zhou, Rong
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2007, 28 : 267 - 297
  • [10] New islands of tractability of cost-optimal planning
    Katz, Michael
    Domshlak, Carmel
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2008, 32 (203-288): : 203 - 288