The influence of graphitization on the thermal conductivity of catalyst layers and temperature gradients in proton exchange membrane fuel cells

被引:11
|
作者
Bock, Robert [1 ,2 ]
Karoliussen, Havard [1 ]
Pollet, Bruno G. [1 ]
Secanell, Marc [3 ]
Seland, Frode [2 ]
Stanier, Dave [3 ]
Burheim, Odne S. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, NO-7491 Trondheim, Norway
[2] Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, NO-7491 Trondheim, Norway
[3] Univ Alberta, Dept Mech Engn, Edmonton, AB T6G 2R3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Graphitization; CL; PEMFC; Thermal conductivity; CONTACT RESISTANCE; WATER TRANSPORT; EX-SITU; GAS;
D O I
10.1016/j.ijhydene.2018.10.221
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As the proton exchange membrane fuel cell (PEMFC) has improved its performance and power density, the efficiency has remained unchanged. With around half the reaction enthalpy released as heat, thermal gradients grow. To improve the understanding of such gradients, PEMFC component thermal conductivity has been increasingly investigated over the last ten years, and the catalyst layer (CL) is one of the components where thermal conductivity values are still scarce. CLs in PEMFC are where the electrochemical reactions occur and most of the heat is released. The thermal conductivity in this region affects the heat distribution significantly within a PEMFC. Thermal conductivities for a graphitized and a non-graphitized CL were measured for compaction pressures in the range of 3 and 23 bar. The graphitized CL has a thermal conductivity of 0.12 +/- 0.05 WK(-1)m(-1), whilst the non-graphitized CL conductivity is 0.061 +/- 0.006 WK(-1)m(-1), both at 10 bar compaction pressure. These results suggest that the graphitization of the catalyst material causes a doubling of the thermal conductivity of the CL. This important finding bridges the very few existing studies. Additionally, a 2D thermal model was constructed to represent the impact of the results on the temperature distribution inside a fuel cell. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1335 / 1342
页数:8
相关论文
共 50 条
  • [1] NUMERICAL PREDICTION OF EFFECTIVE THERMAL CONDUCTIVITY OF CATALYST LAYERS IN PROTON EXCHANGE MEMBRANE FUEL CELLS
    Zhang, Ruiyuan
    Li, Chen
    Fang, Wenzhen
    Tao, Wenquan
    4TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, ASTFE 2019, 2019,
  • [2] Effective protonic and electronic conductivity of the catalyst layers in proton exchange membrane fuel cells
    Du, CY
    Shi, PF
    Cheng, XQ
    Yin, GP
    ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (05) : 435 - 440
  • [3] Improved Cathode Catalyst Layers for Proton Exchange Membrane Fuel Cells
    Jayasayee, K.
    Zlotorowicz, A.
    Clos, D. P.
    Dahl, O.
    Thomassen, M. S.
    Dahl, P. I.
    Kjelstrup, S.
    POLYMER ELECTROLYTE FUEL CELLS 14, 2014, 64 (03): : 321 - 339
  • [4] Structures of membrane electrode assembly catalyst layers for proton exchange membrane fuel cells
    Yu, Tzyy-Lung Leon
    Lin, Hsiu-Li
    Su, Po-Hao
    Wang, Guan-Wen
    Open Fuels and Energy Science Journal, 2012, 5 (01): : 28 - 38
  • [5] Model of catalyst layers for proton exchange membrane fuel cells: Progress and perspective
    Hao, Mingsheng
    Li, Yinshi
    He, Ya-Ling
    CHINESE SCIENCE BULLETIN-CHINESE, 2022, 67 (19): : 2192 - 2211
  • [6] Nanostructured gas diffusion and catalyst layers for proton exchange membrane fuel cells
    Kannan, Arunachala M.
    Veedu, Vinod P.
    Munukutla, Lakshmi
    Ghasemi-Nejhad, Mehrdad N.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (03) : B47 - B50
  • [7] The structure of catalyst layers and cell performance in proton exchange membrane fuel cells
    Inoue, H
    Daiguji, H
    Hihara, E
    JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 2004, 47 (02) : 228 - 234
  • [8] Structure, Property, and Performance of Catalyst Layers in Proton Exchange Membrane Fuel Cells
    Jian Zhao
    Huiyuan Liu
    Xianguo Li
    Electrochemical Energy Reviews, 2023, 6
  • [9] Structure, Property, and Performance of Catalyst Layers in Proton Exchange Membrane Fuel Cells
    Zhao, Jian
    Liu, Huiyuan
    Li, Xianguo
    ELECTROCHEMICAL ENERGY REVIEWS, 2023, 6 (01)
  • [10] Structure of the lonomer Film in Catalyst Layers of Proton Exchange Membrane Fuel Cells
    He, Qianping
    Suraweera, Nethika S.
    Joy, David C.
    Keffer, David J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (48): : 25305 - 25316