New Type Soliton Solutions to Korteweg-de Vries and Benjamin-Bona-Mahony Equations

被引:2
|
作者
Liu Yu [1 ]
机构
[1] Henan Elect Power Res Inst, Zhengzhou 450052, Peoples R China
关键词
COMPACTON SOLUTIONS; EXPLICIT; BBM;
D O I
10.1088/0256-307X/27/9/090201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Korteweg-de Vries equation and the Benjamin-Bona-Mahony equation, and obtain three kinds of new type soliton solutions, i.e. peakon solutions, double-peak (peaked-point and peaked-compacton) soliton solutions. A double solitary wave with blow-up points is also contained.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] ON THE BENJAMIN-BONA-MAHONY REGULARIZATION OF THE KORTEWEG-DE VRIES EQUATION
    Hong, Younghun
    Jang, Junyeong
    Yang, Changhun
    arXiv,
  • [2] Soliton solutions of (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony, Kadomtsev-Petviashvili Benjamin-Bona-Mahony and modified Korteweg de Vries-Zakharov-Kuznetsov equations and their applications in water waves
    Tariq, Kalim Ul-Haq
    Seadawy, A. R.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2019, 31 (01) : 8 - 13
  • [3] Numerical simulations of stochastic conformable space-time fractional Korteweg-de Vries and Benjamin-Bona-Mahony equations
    Pedram, Leila
    Rostamy, Davoud
    NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2021, 10 (01): : 77 - 90
  • [4] On equations of Benjamin-Bona-Mahony type
    Límaco, J
    Clark, HR
    Medeiros, LA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (08) : 1243 - 1265
  • [5] On constructing of multiple rogue wave solutions to the (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony equation
    Cao, Yulei
    Tian, Hao
    Ghanbari, Behzad
    PHYSICA SCRIPTA, 2021, 96 (03)
  • [6] A direct method for generating rogue wave solutions to the (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony equation
    Yang, Xiangyu
    Zhang, Zhao
    Wazwaz, Abdul-Majid
    Wang, Zhen
    PHYSICS LETTERS A, 2022, 449
  • [7] Approximate solutions of Korteweg-de Vries-Benjamin-Bona-Mahony-Burgers equation with dissipative terms
    Qin, Chun-Yan
    Li, Yao-Hong
    Ma, Pan-Li
    Jin, Shou-Bo
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2024,
  • [8] Nonexistence of travelling wave solution of the Korteweg-de Vries Benjamin Bona Mahony equation
    Koshkarbayev, N. M.
    Torebek, B. T.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND PHYSICS, 2019, 10 (01): : 51 - 55
  • [9] A note on convergence of the solutions of Benjamin-Bona-Mahony type equations
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 40 : 64 - 81
  • [10] Remarks on equations of Benjamin-Bona-Mahony type
    Limaco, J.
    Clark, H. R.
    Medeiros, L. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) : 1117 - 1140