Self-Powered Monitoring of Ammonia Using an MXene/TiO2/Cellulose Nanofiber Heterojunction-Based Sensor Driven by an Electrospun Triboelectric Nanogenerator

被引:138
|
作者
Sardana, Sagar [1 ]
Kaur, Harpreet [1 ]
Arora, Bindiya [1 ]
Aswal, Dinesh Kumar [2 ]
Mahajan, Aman [1 ]
机构
[1] Guru Nanak Dev Univ, Dept Phys, Amritsar 143005, Punjab, India
[2] Bhabha Atom Res Ctr, Hlth Safety & Environm Grp, Mumbai 400085, Maharashtra, India
关键词
self-powered; nanofibers; triboelectric nanogenerator; MXene; cellulose; chemiresistive gas sensor; GAS SENSOR; ROOM-TEMPERATURE; HUMAN MOTION; MXENE; FILMS;
D O I
10.1021/acssensors.1c02388
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Real-time monitoring of harmful gases is of great significance to identify the environmental hazards to people's lives. However, this application scenario requiring low-power consumption, superior sensitivity, portability, and self-driven operation of gas sensors remains a challenge. Herein, an electrospun triboelectric nanogenerator (TENG) is synthesized using highly electronegative and conducting MXene nanofibers (NFs) paired with biodegradable cellulose acetate NFs (CA-NFs) as triboelectric layers, which supports a sufficient power density (similar to 1361 mW/m(2)@2 M Omega) and shows a self-powered ability to operate the chemiresistive gas sensor fabricated in this work, Further, by using cellulose nanofibers (C-NFs) as a substrate, a new kind of MXene/TiO2/C-NFs heterojunction-based sensory component is developed for detection of NH3. This sensor exhibits excellent reproducibility, high selectivity, and sensitivity toward NH3 (1-100 ppm) along with a fast response/recovery time (76 s/62 s) at room temperature. Finally, a monitoring system comprising a TENG-powered sensor, an equivalent circuit, and an LED visualizer has been assembled and successfully demonstrated as a fully self-powered device for NH3 leakage detection. Thus, this work pushes forward the intelligent gas sensing network self-driven by human motion energy, dispensing the external battery dependence for environment monitoring to reduce the possible health effects.
引用
收藏
页码:312 / 321
页数:10
相关论文
共 50 条
  • [1] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Li, Yingzhe
    Liu, Chaoran
    Hu, Sanshan
    Sun, Peng
    Fang, Lingxing
    Lazarouk, Serguei
    Labunov, Vladimir
    Yang, Weihuang
    Li, Dujuan
    Fan, Kai
    Wang, Gaofeng
    Dong, Linxi
    Che, Lufeng
    ACOUSTICS AUSTRALIA, 2022, 50 (03) : 383 - 391
  • [2] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Yingzhe Li
    Chaoran Liu
    Sanshan Hu
    Peng Sun
    Lingxing Fang
    Serguei Lazarouk
    Vladimir Labunov
    Weihuang Yang
    Dujuan Li
    Kai Fan
    Gaofeng Wang
    Linxi Dong
    Lufeng Che
    Acoustics Australia, 2022, 50 : 383 - 391
  • [3] Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator
    Cui, Siwen
    Zheng, Youbin
    Zhang, Tingting
    Wang, Daoai
    Zhou, Feng
    Liu, Weimin
    NANO ENERGY, 2018, 49 : 31 - 39
  • [4] Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature
    Wang, Si
    Xie, Guangzhong
    Tai, Huiling
    Su, Yuanjie
    Yang, Boxi
    Zhang, Qiuping
    Du, Xiaosong
    Jiang, Yadong
    NANO ENERGY, 2018, 51 : 231 - 240
  • [5] Research on Self-Powered Rainfall Sensor Suitable for Landslide Monitoring Based on Triboelectric Nanogenerator
    Wu, Chuan
    Zou, Hao
    IEEE SENSORS JOURNAL, 2024, 24 (03) : 2620 - 2627
  • [6] Self-Powered Acceleration Sensor Based on Liquid Metal Triboelectric Nanogenerator for Vibration Monitoring
    Zhang, Binbin
    Zhang, Lei
    Deng, Weili
    Jin, Long
    Chun, Fengjun
    Pan, Hong
    Gu, Bingni
    Zhang, Haitao
    Lv, Zekai
    Yang, Weiqing
    Wang, Zhong Lin
    ACS NANO, 2017, 11 (07) : 7440 - 7446
  • [7] A self-powered inert-gas sensor based on gas ionization driven by a triboelectric nanogenerator
    Liu, Tingshan
    Cui, Juan
    Zheng, Yongqiu
    Bai, Shanming
    Hao, Congcong
    Xue, Chenyang
    NANO ENERGY, 2023, 106
  • [8] A room temperature ammonia gas sensor based on cerium oxide/MXene and self-powered by a freestanding-mode triboelectric nanogenerator and its multifunctional monitoring application
    Wang, Xingwei
    Gong, Likun
    Li, Zheng
    Yin, Yingda
    Zhang, Dongzhi
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (14) : 7690 - 7701
  • [9] Self-powered Real-time Movement Monitoring Sensor Using Triboelectric Nanogenerator Technology
    Liangmin Jin
    Juan Tao
    Rongrong Bao
    Li Sun
    Caofeng Pan
    Scientific Reports, 7
  • [10] Self-powered Real-time Movement Monitoring Sensor Using Triboelectric Nanogenerator Technology
    Jin, Liangmin
    Tao, Juan
    Bao, Rongrong
    Sun, Li
    Pan, Caofeng
    SCIENTIFIC REPORTS, 2017, 7