Homotopy perturbation method for solving Caputo-type fractional-order Volterra-Fredholm integro-differential equations

被引:66
|
作者
Das, Pratibhamoy [1 ]
Rana, Subrata [1 ]
Ramos, Higinio [2 ]
机构
[1] Indian Inst Technol Patna, Dept Math, Patna, Bihar, India
[2] Univ Salamanca, Dept Appl Math, Salamanca, Spain
关键词
approximation method; Caputo fractional derivative; integro-differential equation; homotopy perturbation; Volterra-Fredholm equation;
D O I
10.1002/cmm4.1047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work considers the solution of fractional Volterra-Fredholm integro-differential equations. Here, we consider the approximation of the solution based on semi-analytical approaches. We use the homotopy perturbation method approach for this purpose. It is observed through different examples that the adopted strategy is not only an effective tool for approximation of the solution but also can lead to the exact solution of certain problems.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Solving Fractional Volterra-Fredholm Integro-Differential Equations via A** Iteration Method
    Ofem, Austine Efut
    Hussain, Aftab
    Joseph, Oboyi
    Udo, Mfon Okon
    Ishtiaq, Umar
    Al Sulami, Hamed
    Chikwe, Chukwuka Fernando
    AXIOMS, 2022, 11 (09)
  • [2] Uniqueness and Stability Results for Caputo Fractional Volterra-Fredholm Integro-Differential Equations
    Hamoud, Ahmed A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (03): : 313 - 325
  • [3] Euler wavelets method for solving fractional-order linear Volterra-Fredholm integro-differential equations with weakly singular kernels
    Behera, S.
    Saha Ray, S.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (06):
  • [4] APPLICATION OF HOMOTOPY ANALYSIS METHOD FOR SOLVING A CLASS OF NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
    Behzadi, Sh. S.
    Abbasbandy, S.
    Allahviranloo, T.
    Yildirim, A.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2012, 2 (02): : 127 - 136
  • [5] Improved homotopy perturbation method for solving Fredholm type integro-differential equations
    Yusufoglu , Elcin
    CHAOS SOLITONS & FRACTALS, 2009, 41 (01) : 28 - 37
  • [6] PERIODIC SOLUTIONS FOR NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH ψ-CAPUTO FRACTIONAL DERIVATIVE
    Foukrach, Djamal
    Bouriah, Soufyane
    Benchohra, Mouffak
    Henderson, Johnny
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2022, 86 : 51 - 68
  • [7] NEW RESULTS ON CAPUTO FRACTIONAL VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS
    Sharif, A. A.
    Hamoud, A. A.
    Hamood, M. M.
    Ghadle, K. P.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (02): : 459 - 472
  • [8] A perturbation-based approach for solving fractional-order Volterra-Fredholm integro differential equations and its convergence analysis
    Das, Pratibhamoy
    Rana, Subrata
    Ramos, Higinio
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (10) : 1994 - 2014
  • [9] Convergence analysis of homotopy perturbation method for Volterra integro-differential equations of fractional order
    Sayevand, K.
    Fardi, M.
    Moradi, E.
    Boroujeni, F. Hemati
    ALEXANDRIA ENGINEERING JOURNAL, 2013, 52 (04) : 807 - 812
  • [10] Solving a System of Fractional-Order Volterra-Fredholm Integro-Differential Equations with Weakly Singular Kernels via the Second Chebyshev Wavelets Method
    Bargamadi, Esmail
    Torkzadeh, Leila
    Nouri, Kazem
    Jajarmi, Amin
    FRACTAL AND FRACTIONAL, 2021, 5 (03)