FREDHOLM PROPERTIES OF THE L2 EXPONENTIAL MAP ON THE SYMPLECTOMORPHISM GROUP

被引:2
|
作者
Benn, James [1 ]
机构
[1] 3 Hardie St, Palmerston North 4410, Hokowhitu, New Zealand
来源
JOURNAL OF GEOMETRIC MECHANICS | 2016年 / 8卷 / 01期
关键词
Diffeomorphism group; Maxwell-Vlasov; geodesic; conjugate point; Fredholm map; symplectic Euler equations; CONJUGATE-POINTS; VLASOV EQUATIONS; IDEAL FLUIDS; GEODESICS; GEOMETRY; FLOWS;
D O I
10.3934/jgm.2016.8.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a closed symplectic manifold with compatible symplectic form and Riemannian metric g. Here it is shown that the exponential mapping of the weak L-2 metric on the group of symplectic diffeomorphisms of M is a non-linear Fredholm map of index zero. The result provides an interesting contrast between the L-2 metric and Hofer's metric as well as an intriguing difference between the L-2 geometry of the symplectic diffeomorphism group and the volume-preserving diffeomorphism group.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条