On quantum statistical inference

被引:104
|
作者
Barndorff-Nielsen, OE
Gill, RD
Jupp, PE
机构
[1] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
[2] EURANDOM, Eindhoven, Netherlands
[3] Univ Aarhus, Aarhus, Denmark
[4] Univ St Andrews, St Andrews KY16 9AJ, Fife, Scotland
关键词
quantum cuts; quantum exponential family; quantum information; quantum measurements; quantum score; quantum statistical models; quantum sufficiency; quantum transformation model; spin half;
D O I
10.1111/1467-9868.00415
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have brought the basic mathematical framework for the probability calculations much closer to that of classical probability theory. The present paper reviews this field and proposes and interrelates some new concepts for an extension of classical statistical inference to the quantum context.
引用
收藏
页码:775 / 805
页数:31
相关论文
共 50 条
  • [1] Quantum statistical inference
    Hayashi, Masahito
    QUANTUM COMPUTATION AND INFORMATION: FROM THEORY TO EXPERIMENT, 2006, 102 : 45 - 61
  • [2] Sufficiency in quantum statistical inference
    Jencová, A
    Petz, D
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 263 (01) : 259 - 276
  • [3] Sufficiency in Quantum Statistical Inference
    Anna Jenčová
    Dénes Petz
    Communications in Mathematical Physics, 2006, 263 : 259 - 276
  • [4] Statistical inference for quantum processes
    Holevo, A.S.
    Lecture Notes in Physics, 1991, (378):
  • [5] Geometry of quantum statistical inference
    Brody, DC
    Hughston, LP
    PHYSICAL REVIEW LETTERS, 1996, 77 (14) : 2851 - 2854
  • [6] QUANTUM-STATISTICAL INFERENCE
    MALLEY, JD
    HORNSTEIN, J
    STATISTICAL SCIENCE, 1993, 8 (04) : 433 - 457
  • [7] Geometric approach to quantum statistical inference
    Jarzyna M.
    Kolodynski J.
    IEEE Journal on Selected Areas in Information Theory, 2020, 1 (02): : 367 - 386
  • [8] Geometric models for quantum statistical inference
    Brody, DC
    Hughston, LP
    GEOMETRIC UNIVERSE: SCIENCE, GEOMETRY, AND THE WORK OF ROGER PENROSE, 1998, : 265 - 276
  • [9] Statistical inference, distinguishability of quantum states, and quantum entanglement
    Vedral, V
    Plenio, MB
    Jacobs, K
    Knight, PL
    PHYSICAL REVIEW A, 1997, 56 (06): : 4452 - 4455
  • [10] STATISTICAL-INFERENCE IN COUPLED QUANTUM SYSTEMS
    BENOIST, RW
    MARCHAND, JP
    LETTERS IN MATHEMATICAL PHYSICS, 1979, 3 (02) : 93 - 96