Determining the Entropic Index q of Tsallis Entropy in Images through Redundancy

被引:36
|
作者
Ramirez-Reyes, Abdiel [1 ]
Raul Hernandez-Montoya, Alejandro [1 ,2 ]
Herrera-Corral, Gerardo [3 ]
Dominguez-Jimenez, Ismael [1 ]
机构
[1] CINVESTAV IPN, PhD Program Sci Technol & Soc, AP 14-740, Mexico City 07000, DF, Mexico
[2] Univ Veracruz, Ctr Res Artificial Intelligence, Sebastian Camacho 5, Xalapa 91000, Veracruz, Mexico
[3] CINVESTAV IPN, Dept Phys, AP 14-740, Mexico City 07000, DF, Mexico
来源
ENTROPY | 2016年 / 18卷 / 08期
关键词
Shannon entropy; Tsallis entropy; entropic index q; information theory; redundancy; maximum entropy principle; image thresholding;
D O I
10.3390/e18080299
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Boltzmann-Gibbs and Tsallis entropies are essential concepts in statistical physics, which have found multiple applications in many engineering and science areas. In particular, we focus our interest on their applications to image processing through information theory. We present in this article a novel numeric method to calculate the Tsallis entropic index q characteristic to a given image, considering the image as a non-extensive system. The entropic index q is calculated through q-redundancy maximization, which is a methodology that comes from information theory. We find better results in the image processing in the grayscale by using the Tsallis entropy and thresholding q instead of the Shannon entropy.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] The additivity of the pseudo-additive conditional entropy for a proper Tsallis' entropic index
    Wada, T
    Saito, T
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 305 (1-2) : 186 - 189
  • [2] Determining the Tsallis parameter via maximum entropy
    Conroy, J. M.
    Miller, H. G.
    PHYSICAL REVIEW E, 2015, 91 (05):
  • [3] Evolving Stochastic Learning Algorithm based on Tsallis entropic index
    A. D. Anastasiadis
    G. D. Magoulas
    The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 50 : 277 - 283
  • [4] Evolving stochastic learning algorithm based on Tsallis entropic index
    Anastasiadis, AD
    Magoulas, GD
    EUROPEAN PHYSICAL JOURNAL B, 2006, 50 (1-2): : 277 - 283
  • [5] Tsallis entropy and q-analogue of information
    Johal, RS
    PHYSICS LETTERS A, 1999, 253 (1-2) : 47 - 49
  • [6] A Tsallis entropy-based redundancy measure for water distribution networks
    Singh, Vijay P.
    Oh, Juik
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 421 : 360 - 376
  • [7] Holographic dark energy through Tsallis entropy
    Saridakis, Emmanuel N.
    Bamba, Kazuharu
    Myrzakulov, R.
    Anagnostopoulos, Fotios K.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (12):
  • [8] Evaluating the performance of hyperspectral feature selection algorithm using Tsallis entropy redundancy
    Zhang, Miao
    Shen, Yi
    Wang, Qiang
    Guangdianzi Jiguang/Journal of Optoelectronics Laser, 2009, 20 (06): : 784 - 788
  • [9] Monitoring defects of a moving metallic surface through Tsallis entropic segmentation
    Dias, M. R. B.
    Castro Junior, A. O.
    Dias, C. P.
    de Carvalho, S. A.
    Huguenin, J. A. O.
    da Silva, L.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 534
  • [10] Hierarchical Polygamy Inequality for Entanglement of Tsallis q-Entropy
    Luo, Yu
    Li, Yong-Ming
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 69 (05) : 532 - 536