EIGENVALUE PROBLEMS FOR A CLASS OF STURM-LIOUVILLE OPERATORS ON TWO DIFFERENT TIME SCALES

被引:0
|
作者
Durna, Zeynep [1 ]
Ozkan, A. Sinan [1 ]
机构
[1] Cumhuriyet Univ, Fac Sci, Dept Math, TR-58140 Sivas, Turkey
关键词
  Dynamic equations; time scales; measure chains; eigenvalue problems; Sturm-Liouville theory; BOUNDARY-VALUE-PROBLEMS; DYNAMIC EQUATIONS; L-2; SPACES; POINT;
D O I
10.31801/cfsuasmas.1036073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we consider a boundary value problem generated by the Sturm-Liouville equation with a frozen argument and with non-separated boundary conditions on a time scale. Firstly, we present some solutions and the characteristic function of the problem on an arbitrary bounded time scale. Secondly, we prove some properties of eigenvalues and obtain a formulation for the eigenvalues-number on a finite time scale. Finally, we give an asymptotic formula for eigenvalues of the problem on another special time scale: T = [alpha, delta 1] ? [delta 2, beta].
引用
收藏
页码:720 / 730
页数:11
相关论文
共 50 条