On the generalization ability of GRLVQ networks

被引:44
|
作者
Hammer, B [1 ]
Strickert, M
Villmann, T
机构
[1] Univ Osnabruck, Dept Math Comp Sci, LNM, D-4500 Osnabruck, Germany
[2] Univ Leipzig, Clin Psychotherapy, Leipzig, Germany
关键词
adaptive metric; generalization bounds; LVQ; margin optimization; relevance LVQ;
D O I
10.1007/s11063-004-1547-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We derive a generalization bound for prototype-based classifiers with adaptive metric. The bound depends on the margin of the classifier and is independent of the dimensionality of the data. It holds for classifiers based on the Euclidean metric extended by adaptive relevance terms. In particular, the result holds for relevance learning vector quantization (RLVQ) [4] and generalized relevance learning vector quantization (GRLVQ) [19].
引用
收藏
页码:109 / 120
页数:12
相关论文
共 50 条
  • [1] On the Generalization Ability of GRLVQ Networks
    Barbara Hammer
    Marc Strickert
    Thomas Villmann
    Neural Processing Letters, 2005, 21 : 109 - 120
  • [2] On the generalization ability of recurrent networks
    Hammer, B
    ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 731 - 736
  • [3] Generalization ability of folding networks
    Hammer, B
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2001, 13 (02) : 196 - 206
  • [4] GENERALIZATION ABILITY OF MOS PREDICTION NETWORKS
    Cooper, Erica
    Huang, Wen-Chin
    Toda, Tomoki
    Yamagishi, Junichi
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8442 - 8446
  • [5] GENERALIZATION ABILITY OF OPTIMAL CLUSTER SEPARATION NETWORKS
    WENDEMUTH, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (07): : 2325 - 2333
  • [6] Empirical estimation of generalization ability of neural networks
    Sarkar, D
    APPLICATIONS AND SCIENCE OF ARTIFICIAL NEURAL NETWORKS II, 1996, 2760 : 54 - 60
  • [7] ON THE ABILITY OF NEURAL NETWORKS TO PERFORM GENERALIZATION BY INDUCTION
    ANSHELEVICH, VV
    AMIRIKIAN, BR
    LUKASHIN, AV
    FRANKKAMENETSKII, MD
    BIOLOGICAL CYBERNETICS, 1989, 61 (02) : 125 - 128
  • [8] Empirical estimation of generalization ability of neural networks
    Sarkar, D.
    Neural Network World, 2001, 11 (01) : 3 - 15
  • [9] Evaluating the Generalization Ability of Super-Resolution Networks
    Liu, Yihao
    Zhao, Hengyuan
    Gu, Jinjin
    Qiao, Yu
    Dong, Chao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 14497 - 14513
  • [10] Extract Generalization Ability from Convolutional Neural Networks
    Wu, Huan
    Wu, JunMin
    Ding, Jie
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 729 - 734