Formulae for null curves deriving from elliptic curves

被引:1
|
作者
Small, Anthony [1 ]
机构
[1] Natl Univ Ireland, Dept Math, Maynooth, Kildare, Ireland
关键词
D O I
10.1016/j.geomphys.2007.12.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Any elliptic curve can be realised in the tangent bundle of the complex projective line as a double cover branched at four distinct points on the zero section. Such a curve generates, via classical osculation duality, a null curve in C-3 and thus an algebraic minimal surface in R-3. We derive simple formulae for the coordinate functions of such a null curve. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:502 / 505
页数:4
相关论文
共 50 条
  • [1] On focal curves of null Cartan curves
    Simsek, Hakan
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (06) : 1579 - 1590
  • [2] FORMULAE FOR WORK CURVES
    Ward, D. F.
    BRITISH JOURNAL OF PSYCHOLOGY-GENERAL SECTION, 1942, 33 : 130 - 137
  • [3] Elliptic curves from sextics
    Oka, M
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (02) : 349 - 371
  • [4] Families of Fast Elliptic Curves from Q-curves
    Smith, Benjamin
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2013, PT I, 2013, 8269 : 61 - 78
  • [5] Null Hybrid Curves and Some Characterizations of Null Hybrid Bertrand Curves
    Alo, Jeta
    SYMMETRY-BASEL, 2025, 17 (02):
  • [6] Parametrizations of elliptic curves by Shimura curves and by classical modular curves
    Ribet, KA
    Takahashi, S
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (21) : 11110 - 11114
  • [7] Pseudorandom graphs from elliptic curves
    Shparlinski, Igor E.
    LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 284 - 292
  • [8] Pseudorandom sequences from elliptic curves
    Beelen, PHT
    Doumen, JM
    FINITE FIELDS WITH APPLICATIONS TO CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2002, : 37 - 52
  • [9] Two formulae for space curves
    Archbold, JW
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1930, 26 : 358 - 360
  • [10] Degree formulae for offset curves
    Segundo, FS
    Sendra, JR
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 195 (03) : 301 - 335