Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration

被引:100
|
作者
Ma, Jinxing [1 ]
Ma, Junjun [1 ,2 ]
Zhang, Changyong [1 ]
Song, Jingke [1 ,3 ]
Dong, Wenjia [1 ]
Waite, T. David [1 ]
机构
[1] Univ New South Wales, Sch Civil & Environm Engn, UNSW Water Res Ctr, Sydney, NSW 2052, Australia
[2] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
[3] Tongji Univ, Sch Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, 1239 Siping Rd, Shanghai 200092, Peoples R China
基金
澳大利亚研究理事会;
关键词
Flow-electrode capacitive deionization; Membrane stack; Energy efficiency; Productivity; WATER DESALINATION; ENERGY RECOVERY; PERFORMANCE; EFFICIENCY;
D O I
10.1016/j.watres.2019.115186
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Flow-electrode capacitive deionization (FCDI) is an attractive variant of CDI with distinct advantages over fixed electrode CDI including the capability for seawater desalination, high flow efficiency and easy management of the electrodes. Challenges exist however in increasing treatment capacity with this attempted here through use of a membrane stack configuration. By comparison of standardised metrics (in particular, average salt removal rate (ASRR), energy normalized removed salt (ENRS) and productivity), results show that that an FCDI system with two pairs of ion exchange membranes had the highest efficiency in desalting a brackish influent (1000 mg L-1) to potable levels (similar to 150 mg L-1) at higher ASRR and ENRS. Further increase in the number of membrane pairs resulted in a decrease in current efficiency, likely as a result of the dominance of electrodialysis. Results of this study provide proof of concept that (semi-)continuous desalination can be achieved in FCDI at high energy efficiency (13.8%-20.2%) and productivity (> 100 L m(-2) h(-1)) and, importantly, provide insight into possible approaches to scaling up FCDI such that energy-efficient water desalination can be achieved. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Membrane-Current Collector-Based Flow-Electrode Capacitive Deionization System: A Novel Stack Configuration for Scale-Up Desalination
    Xu, Longqian
    Mao, Yunfeng
    Zong, Yang
    Peng, Shuai
    Zhang, Xiaomeng
    Wu, Deli
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (19) : 13286 - 13296
  • [2] Scale-up desalination: Membrane-current collector assembly in flow-electrode capacitive deionization system
    Xu, Longqian
    Mao, Yunfeng
    Zong, Yang
    Wu, Deli
    WATER RESEARCH, 2021, 190
  • [3] Stack Design and Operation for Scaling Up the Capacity of Flow-Electrode Capacitive Deionization Technology
    Yang, SeungCheol
    Jeon, Sung-il
    Kim, Hanki
    Choi, Jiyeon
    Yeo, Jeong-gu
    Park, Hong-ran
    Kim, Dong Kook
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (08): : 4174 - 4180
  • [4] Membrane-electrode assemblies for flow-electrode capacitive deionization
    Linnartz, Christian J.
    Rommerskirchen, Alexandra
    Walker, Joanna
    Plankermann-Hajduk, Janis
    Koeller, Niklas
    Wessling, Matthias
    JOURNAL OF MEMBRANE SCIENCE, 2020, 605
  • [5] Towards pilot scale flow-electrode capacitive deionization
    Koeller, Niklas
    Mankertz, Lukas
    Finger, Selina
    Linnartz, Christian J.
    Wessling, Matthias
    DESALINATION, 2024, 572
  • [6] Flow-electrode capacitive deionization (FCDI): Selective recovery applications and expanded structural design
    Ma, Jie
    Wang, Xinyu
    Zhou, Runhong
    Chen, Jinfeng
    Rao, Liangmei
    Zheng, Libin
    Yu, Fei
    DESALINATION, 2025, 599
  • [7] Towards long-term operation of flow-electrode capacitive deionization (FCDI): Optimization of operating parameters and regeneration of flow-electrode
    Zhang, Wanni
    Xue, Wenchao
    Zhang, Chunpeng
    Xiao, Kang
    HELIYON, 2024, 10 (02)
  • [8] Selective Recovery of Phosphorus from Synthetic Urine Using Flow-Electrode Capacitive Deionization (FCDI)-Based Technology
    Xu, Longqian
    Yu, Chao
    Tian, Shiyu
    Mao, Yunfeng
    Zong, Yang
    Zhang, Xiaomeng
    Zhang, Bing
    Zhang, Changyong
    Wu, Deli
    ACS ES&T WATER, 2021, 1 (01): : 175 - 184
  • [9] Membrane-spacer assembly for flow-electrode capacitive deionization
    Lee, Ki Sook
    Cho, Younghyun
    Choo, Ko Yeon
    Yang, SeungCheol
    Han, Moon Hee
    Kim, Dong Kook
    APPLIED SURFACE SCIENCE, 2018, 433 : 437 - 442
  • [10] Enhancing desalination efficiency via structurally optimized symmetrical flow channels in flow-electrode capacitive deionization (FCDI)
    Fang, Houhan
    Jin, Yang
    Li, Jun
    Wang, Jiandong
    Wang, Yiping
    Deng, Jie
    Wang, Wen
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 365